MII—P S

TECHNOLOGIES

MIPS32 4K™ Processor Core Family
Integrator’'s Manual

Document Number: MD00036
Revision 01.10
September 20, 2002

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Copyright © 1999-2002 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) are reserved under the Copyright Laws of the United States of America.

If this document is provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format), then
its use and distribution is subject to a written agreement with MIPS Technologies, Inc. ("MIPS Technologies"). UNDER NO

CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY
WITHOUT THE EXPRESS WRITTEN CONSENT OF MIPS TECHNOLOGIES.

This document contains information that is proprietary to MIPS Technologies. Any copying, reproducing, modifying, ol
this information (in whole or in part) which is not expressly permitted in writing by MIPS Technologies or a
contractually-authorized third party is strictly prohibited. At a minimum, this information is protected under unfair comp
and copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information containe
document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
application or use of this information, or of any error of omission in such information. Any warranties, whether expre
statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a pat
purpose, are excluded. Any license under patent rights or any other intellectual property rights owned by MIPS Tecl
or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party in a separate lic
agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in vic
any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software
commercial computer software documentation or other commercial items. If the user of this information, or any rela
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of tt
States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or transfer
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulatior
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The u
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or a
contract terms and conditions covering this information from MIPS Technologies or any contractually-authorized thir

MIPS®, R300, R400&, R5008 and R10008 are among the registered trademarks of MIPS Technologies, Inc. in tt
United States and certain other countries, and MIPS16™, MIPS16e™, MIPS32™, MIPS64™, MIPS-3D™, MIPS-b:
MIPS I™, MIPS [I™, MIPS lII™ MIPS IV™, MIPS V™ MDMX™, MIPSsim™, MIPSsimCA™, MIPSsimIA™,
QuickMIPS™, SmartMIPS™, MIPS Technologies logo, 4K™, 4Kc™, 4AKm™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KE
4AKS™ 4KSc™, M4K™ B5K™ 5Kc™, 5Kf™, 20K™, 20Kc™, 25Kf™ R4300™, ASMACRO™, ATLAS™, BusBridge’
CoreFPGA™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, PDtrace™, SEAD™, SEAD-2™, SOC-it™, The Pipelin
and YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.06Build with Conditional Tags: 2B JADE MIPS32 PROC
MIPS32 4K™ Processor Core Family Integrator’'s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

w wn

Table of Contents

Overview 1
Environment Variable Setup

Signal Description 3
INE= T g1 aTo IO o] 01V /=T 0 (o] o ISP PRURPPP 3
Signal Description

EC™ Interface 9
10T [T 1o) o SRR
T 1= = ot I =T = o 1T 1SS

L= 1S (1S == Lo I = Vg 7= Tod 1T o
Single Read with Wait States
L= TS (TS VAV (T I = U 1= U 1o T RSP
Single Write with Wait States
Burst Read
BUIST WWEIEE coeiiiiiiiiii e e i e e e e e e e et e e e e e e s e e ettt e eeeeeeeeeeeaansss s et e e e e s s s— et e e e e e e e e e
Back-to-Back Reads
12T Tod g (0 = 7= Vo A1 =P
Read Followed by Write with Reordering
Write Followed by Read with Reordering
Outstanding Transactions
Sequential Transactions
R AT 1 C N = U 1 = O PPRSERR
Merge Pattern Control
SIMPIEBE MOE .. e e e e e s e e e e e e e e nnnnn
External Write Buffers

EJTAG Interface 25
EJTAG VEISUS JTAG oottt e e e e e e e e e et e ettt ettt et et e et ee b et et s s o1 oo o4 2o o4+ Ammmmmm———— et e £ 1 e ee b s
EJTAG SIMIANES 10 JTAG .ottt ettt e e e e e e s e e bbbttt e et e e e e e e som—— e e e
Sharing EJTAG resources with JTAG
How to connecEJ_* pins
EJTAG ChIP-1EVEI PINS ittt e e e e e e e e e s e bbb bbb s mmmeeeeeeeeeeeaeeeeeaaananns
EJTAG Device ID input pins
EJTAG Software Reset pins
Multi-Core implementation
TDI/TDO daisy-chain connection
Multi-Core Breakpoint Unit

Performance Monitoring Interface 33
PM Interface versus Performance Counters

T =T = ot o] (o Lo o | ST PPPRR 33
YT o] £ PP SP ORI 34
Example INStrUCHON SEOUENCE iiiiiiiiiiiee ittt et e e st e e et e mmeeeeemmnnaee e e e ne e 34

Simulation Models 37
BUS FUNCHONAI MOAEI ..ttt e et e e s st e e e s s st e e e e sme e e e esbe e e e e e snbbeeeeeanneee
Cycle-Exact Simulation Model

Installing the VIMIC MOAEI ...eeeeeeeice ettt e e e e e e e e e e s e e snnrnnes
Verifying the VMC Installation
SWIFT Template Generation
Back-annotating with SDF Timing

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 3

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

REQISIEN WINUOWS .ottt s s s e s e e e e e e e e e e e e e e et et et et et eeeae e e e e s s e e e e s s— 11121222220 39

VMC Simulation configUration cooiiiiiiii s e e e e e e e e e e e e e et e e e eeeeaeeeets ernsnnnnnnnmreerereres 40
QI = (TS (TSP PP PPPPPPPP
Simple Testbench

MUILIPIE VIMC INSEANCES ...eeiieiiiiiiee ettt e oottt ettt e e e e e e s e e bbbt b ettt e e e e e 44 s o———— 12122221111 44
ASSEITION ChECKS oottt e e e oo e e bt et e e e e eeeeeaaaaeeea s e s nnnbebeeeeeeas 44

Clocking, Reset & Power 45
ClOCKING ettt ettt oo bt e e E e e oo R b4+ ————— 11111t 1411 an b r et e e e nnre s
SI|_CIkInClock R
EJ_TCKClock
Handling CIOCK INSErtioN DEIAY cooiiiiiiiieiiii ettt e e e e e neee s nneee s 45
Reset and Hardware INItAlIZAION ooiiiiiiiiiiiiiee e eemm e e eeeeam e e e e neree s 46
S|_ColdReset
] I T TR STSPTP
ST N PP OTPPPPROPPPPPPOt
o S I N O PO PP P PUPPPPTOP
Power Management
RedUuCingSI_CIKINTIEQUENCY ..eeiiiiiiiiiie ittt ettt e e st e s st et e e s anben e e e s s emnnnns 47..
Software-induced SIEEP MOUE ..t e st me e e e e e emn e e e e e e e neee 47

Revision History 49

4 MIPS32 4K™ Processor Core Family Integrator’'s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 3-1: FASIESt REAU CYCIB.....uuuiiii it r e rean e e e e e e eaeaaaaaaaas
Figure 3-2: Single Read Transaction with Wait States
Figure 3-3: Fastest Write TranSaCtioNvvvvvviiviiiiiiiiiie e e e e e e e e e e e e e e e eeeaeanenenens
Figure 3-4: Single Write Transaction with Wait States
Figure 3-5: Burst Read Transaction Timing DIagramcooiiiiiiiiiiiiieiiirsss s e e e e e commm—— 12111

Figure 3-6: Burst Write Transaction TiminNg Diagram.......cccccuiiiiiiiiie i s e e e
Figure 3-7: Back-to-Back Read Transaction Timing Diagram R
Figure 3-8: Back-t0-Back Wrte TraNSACHIONSuuuuuieiiiiieie i e e e e eeeeeeee e e e et e e e eeeeeeeeaeesnnnnnn e as 18
Figure 3-9: Read Followed by Write Transaction with Reordering eeeeen 19
Figure 3-10: Write Followed by Read Transaction with Reordering... trrrrereeneeneeeeaeaeeeeses eo————— 20
Figure 4-1: Daisy chained TDI-TDO between JTAG and EJTAG TAP controller ... 26.......
Figure 4-2: Multiplexing between JTAG and EJTAG TAP CONrOllErooviiiiiiiiiiiieee e 27
Figure 4-3: EJTAG chip-level pin CONNECTION ..ottt s emmmmmmmmmnnenr e e e e e e e 28
Figure 4-4: Possible Reset circuitry implementationeeeiiiiiiiioiii et e e 30
Figure 4-5: Multi-Core IMplementationeeiiiiiii i e e eeee s mmm bbb e e e eeeaeeeeeeas 31
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 5

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 2-1:
Table 2-2:
Table 2-3:
Table 3-1:
Table 3-2:
Table 3-3:
Table 5-1:
Table 6-1:
Table 6-2:

SIGNAI TYPE KBY .ttt e e e e e e oo e s bbbt e e et et e s e ettt e e e e e e e nanbeeeeees 3
YT = I o (=111 1= 3
S (o gt Ul D= g o] (o] o S PO OU TR PPPPP 4
SeQUENLIAI BUISE OFUENoiiiiiieiiiiite ettt e e e e ettt e et e s s mmmmmmeenes s st bebeeeeeeaeeeeeeanns 13
SUDBBIOCK BUISE OFUET ...ttt ettt s mmmnmemmmnn ettt e s nnnn e s 14
Allowable Byte Enables in SIMPIEBE MOUE............euiiiiiiiiiiiiiee s e e 22

Performance Monitoring EXAMPIEuii et e e e e e 35
Core signals visible in VIMC MOAEIccoiiiiiii st nnenr s 39
VMC Configuration OPLIONScoiiieiiiiiie ettt e e e e et et e e e e e e e s s meeeeaeaannn s nebebeeeeeeaeeas 40

MIPS32 4K™ Processor Core Family Integrator’'s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 1

Overview

This document, thIPS32 4K™ Processor Core Family Integrator's Mantsltargeted for the ASIC designer who
is integrating a version of a MIPS32 4K processor core into his/her system ASIC. This document is applicable to both
those integrators who are using a hard core and those who are incorporating a soft core.

Chapter 2, “Signal Description,” on pag&&scribes the pins of the core.
Chapter 3, “EC™ Interface,” on pageal®scribes the EC™ interface protocol used by the core.

Chapter 4, “EJTAG Interface,” on page @Scusses the EJTAG interface used by the core, including the EJTAG TAP
controller.

Chapter 6, “Simulation Models,” on page 37 describes models that can be used in place of the 4K core. These include
the Bus Functional Model (BFM) and a cycle-accurate simulation model consisting of a model compiled with the Verilog
Model Compiler tool (VMC™). The BFM is a fast model that can inject EC interface transactions into a system model

to verify its compliance with the EC interface protocol. The VMC model provides a cycle-exact model of a 4K core that

is used as a golden reference model in the customer verification environment for soft core licensees. It is also used by
hard core integrators, and others who do not receive the RTL, to simulate with the 4K core.

Chapter 7, “Clocking, Reset & Power,” on page 45 covers issues related to handling the clock insertion delay of the 4K
core. Additionally, the hardware reset requirements of the core, as well as power management techniques, are discussed.

1.1 Environment Variable Setup

Some Unix paths described in the document refer to the JADEHOME environment variable, which should point to the
top level of your 4K core deliverables. To set this variable:

% cd <release directory>
% setenv JADEHOME ‘pwd’ # Note that these are back-ticks, not single quotes

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 1

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 1 Overview

2 MIPS32 4K™ Processor Core Family Integrator’'s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2

Signal Description

This chapter describes the signals on a MIPS32 4K™ processor core. Only naming convention and actual pin names are
listed here. The specific interface protocol to which each pin adheres is described in subsequent chapters.

2.1 Naming Convention

The pin direction key for the signal descriptions is showraisle 2-1below.
Table 2-1 Signal Type Key

Type Description
| Input to the core, unless otherwise noted, sampled on the rising edge of the appropriate clock
signal.
o Output of the core, unless otherwise noted, driven at the rising edge of the appropriate ¢lock
signal.
A Asynchronous inputs that are synchronized by the core
s Static Input to the core. These signals control configuration options and are normally tied to

either power or ground. They should not change state while SI_ColdReset is deasserted.

The names of interface signals present on a 4K core are prefixed with a unique string, according to their primary function.
Table 2-2defines the prefixes used for 4K core interface signals.

Table 2-2 Signal Prefix Key

Prefix Description
EB_ Signals directly related to the EC interface.
SI_ General system interface signals, which are not part of the EC interface.
EJ_ Signals related to the EJTAG interface.
PM_ Performance monitoring signals.
Scan/Bist Signals related to design-for-test features, either scan or memory BIST.

Generally, most signals have high-active assertion levels if not otherwise specified in the tables. Signals ending in the
suffix “_N’ are low active.

2.2 Signal Description

All core signals are listed ifiable 2-3below. Note that the signals are grouped by logical function, not by expected
physical location. All signals, with the exceptionEaf TRST_Nare active high signalEJ_DINTandSI_NMIgo
through edge-detection logic so that only one exception is taken each time they are asserted.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 3

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Signal Description

Table 2-3 Signal Descriptions

Signal Name

Type

Description

System Interface: Refer to Chapter 7, “Clocking, Reset & Power,” on page 45 for more details

Clock Signals: Refer to Section 7.1, "Clocking" on page 45 for more details

Clock input. All inputs and outputs, except a few of the EJTAG signals, gre

SI_Clkin sampled and/or asserted relative to the rising edge of this signal.
(@) Reference clock for the External Bus Interface. This clock signal is interjded
SI_CIkOut to provide a reference for de-skewing any clock insertion delay created by the
internal clock buffering in the core.
Reset Signals: Refer to Section 7.2, "Reset and Hardware Initialization" on page 46 for a description of the yarious
types of reset.
SI_ColdReset A Hard/Cold reset signal. Causes a Reset Exception in the core.
A Non-maskable Interrupt. An edge detect is used on this signal. When th|s
SI_NMI signal is sampled asserted (high) one clock after being sampled deasserted, an
NMI is posted to the core.
SI_Reset A Soft/Warm reset signal. Causes a SoftReset Exception in the core.

Power management signals: See

Section 7.3, "Power Management" on page 47 for more details

SI_ERL

O

This signal represents the state of the ERL bit (2) in the CPO Status registe
indicates the error level. The core asserts SI_ERL whenever a Reset, S
Reset, or NMI exception is taken.

rand
pft

SI_EXL

This signal represents the state of the EXL bit (1) in the CPO Status reg
and indicates the exception level. The core asserts SI_EXL whenever a
exception other than a Reset, Soft Reset, NMI, or Debug exception is ta

ster

ny
ken.

SI_RP

This signal represents the state of the RP bit (27) in the CPO Status reg
Software can write this bit to indicate that the device can enter areduced p
mode.

ster.
ower

SI_SLEEP

This signal is asserted by the core whenever the WAIT instruction is exec
The assertion of this signal indicates that the clock has stopped and tha
core is waiting for an interrupt.

uted.
t the

Interrupt Signals:

SI_Int[5:0]

Active high Interrupt pins. These signals are driven by external logic and w
asserted indicate the corresponding interrupt exception to the core. The
signals go through synchronization logic and can be asserted asynchron
to SI_CIkin

hen
se
ously

SI_Timerint

This signal is asserted whenever the Count and Compare registers mat
is deasserted when the Compare register is written. In order to have tim
interrupts, this signal needs to be brought back into the 4K core on one g
six SI_Intinterrupt pins. Traditionally, this has been accomplished via mu
SI_Timerint with SI_Int[5]. Exposing SI_TimerInt as an output allows md
flexibility for the system designer. Timer interrupts can be muxed or ORed
one of the interrupts, as desired in a particular system. In a complex syste
could even be fed into a priority encoder to allow SI_Int[5:0] to map up to
interrupt sources.

Configuration Inputs:

S|_Endian

Indicates the base endianness of the core.

EB_Endian Base Endian Mode
0 Little Endian
1 Big Endian

ch and
er

f the
ing

re

nto
m, it
63

MIPS32 4K™ Processor Core Family Integrator’'s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

2.2 Signal Description

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

The state of these signals determines the merge mode for the 16-byte
collapsing write buffer. SeBection 3.5.1, "Merge Pattern Control" on page 21
for more information about these modes.

Encoding Merge Mode

SI_MergeMode[1:0] S 00 No Merge
01 Reserved

10 Full Merge

11 Reserved

The state of these signals can constrain the core to only generate certain byte
enables on EC interface transactions. This eases connection to some existing
bus standards. S&ection 3.6, "SimpleBE Mode" on page f2i2 more details.

SI_SimpleBE[1:0] Byte Enable Mode

SI_SimpleBE[1:0] S 00, Al BEs allowed
Naturally aligned bytes, halfwords,

0L and words only
10, Reserved
11, Reserved

EC™ interface Refer t€hapter 3, “EC™ Interface,” on pagdd¥ more details.

Indicates whether the target is ready for a new address. The core will ngt
EB_ARdy I complete the address phase of a new bus transaction until the clock cyclg after
EB_ARdy is sampled asserted.

When asserted, indicates that the values on the address bus and accesp types
EB_Avalid (0] lines are valid, signifying the beginning of a new bus transaction. EB_AValid
must always be valid.

When asserted, indicates that the transaction is an instruction fetch versus a

EB_Instr 0 data reference. EB_lInstr is only valid when EB_AValid is asserted.

When asserted, indicates that the current transaction is a write. This sighal is

EB_Write o only valid when EB_AValid is asserted.

When asserted, indicates that the current transaction is part of a cache fi|l or a
o write burst. Note that there is redundant information contained in EB_Burst,

EB_Burst EB_BFirst, EB_BLast, and EB_BLen. This is done to simplify the system
design - the information can be used in whatever form is easiest.
EB_BFirst 0] When asserted, indicates beginning of burst. EB_BFirst is always valid,
EB_BLast (0] When asserted, indicates end of burst. EB_BLast is always valid.
Indicates length of the burst. This signal is only valid when EB_AValid is
asserted.
EB_BLength<1:0> Burst Length
EB_BLen<1:0> o) 0 reserved
1 4
2 reserved
3 reserved
EB SBlock s When sampled asserted, sub block ordering is used. When sampled deasgerted,
— sequential addressing is used.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 5

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Signal Description

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

Indicates which bytes of the EB_RData or EB_WData buses are involved in
the current transaction. If an EB_BE signal is asserted, the associated hyte is
being read or written. EB_BE lines are only valid while EB_AValid is assefted

EB_BE Read Data Bits Sampled Write Data Bits
Signal Driven Valid

EB_BE<0> EB_RData<7:0> EB_WData<7:0>

EB_BE<3:0> (0]

EB_BE<1>

EB_RData<15:8>

EB_WData<15:8>

EB_BE<2>

EB_RData<23:16>

EB_WData<23:16>

EB_BE<3>

EB_RData<31:24>

EB_WData<31:24>

Address lines for external bus. Only valid when EB_AValid is asserted.

EB_A<35:2> o EB_A[35:32] are tied to 0 in the 4K cores.

EB_WData<31:0> (0] Output data for writes

EB_RData<31:0> | Input Data for reads

Indicates that the target is driving read data on EB_RData lines. EB_Rd)Val
must always be valid. EB_RdVal may never be sampled asserted until the
rising edge after the corresponding EB_ARdy was sampled asserted.

EB_RdVal |

Indicates that the target of a write is ready. The EB_WData lines can change
in the next clock cycle. EB_WDRdy will not be sampled until the rising edge
where the corresponding EB_ARdy is sampled asserted.

EB_WDRdy [

Bus error indicator for read transactions. EB_RBErr is sampled on every rising
clock edge until an active sampling of EB_RdVal. EB_RBErr sampled w(th
asserted EB_RdVal indicates a bus error during read. EB_RBErr must he
deasserted in idle phases.

EB_RBEIT |

Bus error indicator for write transactions. EB_WBEIr is sampled at the riging
clock edge following an active sample of EB_WDRdy. EB_WBErr must be
deasserted in idle phases.

EB_WBEIT |

Indicates that any external write buffers are empty. The external write buffers
must deassert EB_EWBE in the cycle after the corresponding EB_WDRdly is
asserted and keep EB_EWBE deasserted until the external write bufferg are
empty. See Section 3.7, "External Write Buffers" on page 23 for more details

EB_EWBE |

When asserted, indicates that the core is waiting for external write buffefs to

EBE_WWEE o empty. See Section 3.7, "External Write Buffers" on page 23 for more details.

EJTAG Interface: Refer tBhapter 4, “EJTAG Interface,” on page 6 more details.

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core
does not implement the TAP controller.

EJ TRST N | Active low Test Reset Input (TRST*) for the EJTAG TAP. EJ_TRST_N muyst
- - be asserted at power-up to cause the TAP controller to be reset.
EJ_TCK | Test Clock Input (TCK) for the EJTAG TAP.
EJ_TMS | Test Mode Select Input (TMS) for the EJTAG TAP.
EJ_TDI | Test Data Input (TDI) for the EJTAG TAP.
EJ_TDO (0] Test Data Output (TDO) for the EJTAG TAP.
6 MIPS32 4K™ Processor Core Family Integrator’'s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

2.2 Signal Description

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state

0: The TDO output at chip level must be driven to the value of EJ_TDO.
EJ_TDOzstate 0]
IEEE Standard 1149.1-1990 defines TDO as a tri-stated signal. To avoig
having a tri-state core output, the 4K core outputs this signal to drive an
external tri-state buffer.

Debug Interrupt:

Value of DINTsup for the Implementation register. A 1 on this signal indicates
s that the EJTAG probe can use DINT signal to interrupt the processor. This

signal should be asserted if the DINT pin on the EJTAG probe header is
connected to the EJ_DINT input of the core.

EJ_DINTsup

Debug exception request when this signal is asserted in a CPU clock pegriod
EJ_DINT | after being deasserted in the previous CPU clock period. The requestis clgared
when debug mode is entered. Requests when in debug mode are ignored.

Debug Mode Indication

Asserted when the core is in DebugMode. This can be used to bring the core
out of a low power mode (see Section 7.3, "Power Management" on page 47
for more details). In systems with multiple processor cores, this signal can be

used to synchronize the cores when debugging.

EJ_DebugM o

Device ID bits: These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller
is notimplemented, these inputs are not connected. These inputs are always available for soft core customerg. On hard
cores, the core “hardener” may set these inputs to their own values

Value of the ManuflD[10:0] field in the Device ID register. As per IEEE
1149.1-1990 section 11.2,the manufacturer identity code shall be a

compressed form of JEDEC standard manufacturer’s identification code ip the
JEDEC Publications106, which can be found at: http://www.jedec.org/

EJ_ManufiD[10:0] S ManufID[6:0] bits are derived from the last byte of the JEDEC code by
discarding the parity bit. ManufID[10:7] bits provide a binary count of the
number of bytes in the JEDEC code that contain the continuation charagter

(OX7F). Where the number of continuations characters exceeds 15, these|4 bits
contain the modulo-16 count of the number of continuation characters.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs: These signals come from EJTAG control registers. They have |no effect
on the core, but can be used to give EJTAG debugging software additional control over the system.

Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft

EJ_SRstE (@] resets. If this signal is deasserted, none, some, or all soft reset sources|are
masked.
EJ_PerRst o Peripheral Reset. EJTAG can assert this signal to request the reset of sgme or

all of the peripheral devices in the system.

EJ PrRst o Processor Reset. EJTAG can assert this signal to request that the core be reset.
- This can be fed into the SI_Reset signal

Performance Monitoring Interface: These signals can be used to implement performance counters which cgn be
used to monitor HW/SW performance. Refer to Chapter 5, “Performance Monitoring Interface,” on page 33 for more

details.
PM_DCacheHit (0] This signal is asserted whenever there is a data cache hit.
PM_DCacheMiss o This signal is asserted whenever there is a data cache miss.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 7

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Signal Description

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
This signal is asserted whenever there is a hit in the data TLB. This signal is
PM_DTLBHit (@) valid only on the 4Kc™ core and should be ignored when using the 4Kp™|and
4Km™ cores.
This signal is asserted whenever there is a miss in the data TLB. This signal is
PM_DTLBMiss (0] valid only on the 4Kc core and should be ignored when using the 4Kp apd
4Km cores.
PM_ICacheHit This signal is asserted whenever there is an instruction cache hit.
PM_ICacheMiss This signal is asserted whenever there is an instruction cache miss.
PM_InstComplete This signal is asserted each time an instruction completes in the pipelipe.
This signal is asserted whenever there is an instruction TLB hit. This signal is
PM_ITLBHit (@) valid only on the 4Kc core and should be ignored when using the 4Kp and
4Km cores.
This signal is asserted whenever there is an instruction TLB miss. This signal
PM_ITLBMiss (0] is valid only on the 4Kc core and should be ignored when using the 4Kp and
4Km cores.
This signal is asserted whenever there is a joint TLB hit. This signal is valid
PM_JTLBHit (0] only on the 4Kc core and should be ignored when using the 4Kp and 4Km
cores.
This signal is asserted whenever there is a joint TLB miss. This signal is alid
PM_JTLBMiss (0] only on the 4Kc core and should be ignored when using the 4Kp and 4Km
cores.
This signal is asserted whenever there is a successful merge in the writg
PM_WTBMerge o through buffer.
This signal is asserted whenever a non-merging store is written to the write
PM_WTBNoMerge O through buffer.
Scan Test Interface:These signals provide the interface for testing the core. The use and configuration of thege pins
are implementation dependent.
This signal should be asserted while scanning vectors into or out of the core.
ScanEnable The ScanEnable signal must be deasserted during normal operation and guring
capture clocks in test mode.
This signal should be asserted during all scan testing both while scanning and
ScanMode during capture clocks. The ScanMode signal must be deasserted during nprmal
operation.
Scanln<n:0> | This signal is input to scan chain.
ScanOut<n:0> (0] This signal is output from scan chain.
Bistln<n:0> | Input to the BIST controller
BistOut<n:0> (@) Output from the BIST controller
8 MIPS32 4K™ Processor Core Family Integrator’'s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3

EC™ |nterface

3.1 Introduction

This chapter describes the EC™ interface, which is present on all MIPS32 4K™ processor cores. The EC interface is
generally described in a companion document, tiE€I™ Interface SpecificatiofMD00052). The rest of this chapter
discusses the specific 4K implementation of the EC interface.

3.2 Interface Transactions
The cores implement 32-bit unidirectional data buE&s:RData[31:0]for read operations areB_WData[31:0]for
write operations. The following sections describe following bus transactions:
» Section 3.2.1, "Fastest Read Transaction”
» Section 3.2.2, "Single Read with Wait States"
» Section 3.2.3, "Fastest Write Transaction"
» Section 3.2.4, "Single Write with Wait States"
» Section 3.2.5, "Burst Read"
» Section 3.2.6, "Burst Write"
» Section 3.2.7, "Back-to-Back Reads"
» Section 3.2.8, "Back-to-Back Writes"
» Section 3.2.9, "Read Followed by Write with Reordering”
» Section 3.2.10, "Write Followed by Read with Reordering"”

3.2.1 Fastest Read Transaction

The core allows data to be returned in the same clock that the address is driven onto the bus. This is the fastest type of
read cycle as shown Figure 3-1

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 9

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 EC™ Interface

10

Clock # 1 2 3 4 5 6 7 8

siewout | L L[L[L[LT LI LI 1L
EB_ARdy _ /

es As2) 7777 /XNa X7 7/ 3R 7 177777777 777777717777777777
es seso) L/LIXNaX 777777 TRTTTT 7777777 77777777
EB_Avalid /S N\ > Driven by system logic

EB_RData31:0] /////// /N3N [/ /LA /111111

EB_RdVal /] _\/
4

-
A

EB_RBErr /_

es_wite ////\ NN/ LT

Figure 3-1 Fastest Read Cycle

In this transaction, the core drives address and control onto the bus and sBBipRdVakctive on the next rising edge
of the clock.

3.2.2 Single Read with Wait States

Figure 3-2shows the basic timing relationships of signals during a single read transaction with wait states. The core
drives address onteB_A[35:2] and byte enable information orfé® _BE[3:0]. To maximize performance, the bus

interface does not define a maximum number of outstanding bus cycles. Instead the interface pr&aBlesRtg

input signal; this signal is driven by external logic and controls the generation of addresses on the bus. Current versions
of the 4K cores can only have a maximum of 8 reads and 4 writes outstanding, but future version may have a larger
number of outstanding transactions.

The core drives an address whenever it becomes available, regardless of theEBatARHyHowever, the core always
continues to drive address until the clock afi8 ARdyis sampled asserted. For example, at the rising edge of clock 2
in Figure 3-2theEB_ARdysignal is sampled low, indicating that external logic is not ready to accept the new address.
However, the core still driveSB_A[35:2] in this clock as shown. At the rising edge of clock 3 the core samples
EB_ARdyasserted and continues to drive address until the rising edge of clock 4.

TheEB_Instrsignal is asserted during a single read cycle if the read is for an instruction fetcRBIr #/alidsignal is
driven in each clock th&B_A[35:2]is valid on the bus. The core drives &R Writesignal low to indicate a read
transaction.

TheEB_RData[31:0JandEB_RdVakignals are first sampled at the rising edge of clock 4, one clockEReARdyis
sampled asserted. Data is sampled on every clock thereaftd BinRidValis sampled asserted.

If a bus error occurs during the data transaction, external logic asséf® tRBErrsignal in the same clock as
EB_RdVal

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

3.2 Interface Transactions

Figure 3-2shows a single read transaction with one address wait state and one data wait state.

Clock # 1 3 4 5 6 7 8

SIC T R A

Addr {Address and|Control held until clock after EB_ARdy

EB_ARdy 777>\Wai§/77_‘<npled asserted
es_apss2) /777X eid /77777717 7771777717 777777777
es seo) /7 Valid LLIRL P
EB_Avalid > Driven by system logic

)
es_Rroaw310] ////// /[1TSS)]

EB_RdVal /| {;/
~

EB_RBErT /]

EB_Write ////\ N\

Figure 3-2 Single Read Transaction with Wait States

3.2.3 Fastest Write Transaction

The core allows thEB_WDRdysignal to be driven active in the same clock that address and data are driven onto the
bus. This is the fastest type of write cycle as showkigare 3-3

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 11

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 EC™ Interface

Clock #
SI_CIkOut
EB_ARdy
EB_A[35:2]
EB_Write
EB_BE[3:0]
EB_Avalid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

In this transaction, the core drives address and control onto the bus and &Bnpé3Rdyactive on the same rising

edge of the clock.

s
LLLLIXSX L

[/ XL

/1]

/1l

///

////

[LLLIXva8 X/

L1

///

///

/N

Data is Driven until cloc|

fter EB_WDRdy

LIS L]

//

////

.= Driven by syst¢

em logic

N ——
\\/__\‘//

Figure 3-3 Fastest Write Transaction

3.2.4 Single Write with Wait States

Figure 3-4shows a typical write transaction with wait states. The core drives address and control information onto the
EB_A[35:2]andEB_BE[3:0] signals at the rising edge of clock 2. As in the single read cycle with wait states, these
signals remain active until the clock edge afterfi2 ARdysignal is sampled asserted. The core assert&BhéVrite

signal to indicate that a valid write cycle is on the bus, and asE&t#\Validto indicate that a valid address is on the bus.

The core drives write data onEB_WData[31:0]in the same clock as address and continues to drive data until the clock
edge after th&B_WDRdyignal is sampled asserted. If a bus error occurs during a write operation, external logic asserts

theEB_WABErrsignal one clock after assertie@ WDRdy

Figure 3-4shows a write transaction with one address wait state and two data wait states.

12

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

3.2 Interface Transactions

Clock #

SI_CIkOut

EB_ARdy

EB_A[35:2]

EB_Write

EB_BE[3:0]

EB_AValid

EB_WData[31:0]

EB_WDRdy

1 2 3 4 5 6 7 8
L L] L L] L L
dr Address and Control|held until clock after EB_ARdy

A
L[N/

‘\sampled asserted

LI

alid

L1111

///

///

////

g

\ s

///

///

////

[/ Naid /IR
I \
Data is Driven until clock|after EB_W\bF\édy
W, valid LI

EB_WBEIrr

Drn

iven by s

T

[T\

3.2.5 Burst Read

Figure 3-4 Single Write Transaction with Wait States

ystem logic

The core is capable of generating burst transactions on the bus. A burst transaction is used to transfer multiple data items

in one transaction.

Figure 3-5shows an example of a burst read transaction. Burst read transactions initiated by the core always contain four
data transfers. In addition, the data requested is always a 16- byte-aligned block. Burst reads are always initiated for

cacheable instruction or data reads which have missed in the primary instruction or data cache.

The order of words within this 16-byte block varies depending on which of the words in the block is being requested by
the execution unit and the ordering protocol selected. The burst always starts with the word requested by the execution
unit and proceeds in either an ascending or descending order wrapping at the end of an aligrebla@:#kand

Table 3-2show the sequence of address bits 2 and 3.

Table 3-1 Sequential Burst Order

Starting Address EB_A[3:2] Address Progression of EB_A[3:2]
00 00, 01, 10, 11
01 01, 10, 11, 00
10 10, 11, 00, 01
11 11, 00, 01, 10

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

13

Chapter 3 EC™ Interface

14

Table 3-2 SubBlock Burst Order

Starting Address EB_A[3:2] Address Progression of EB_A[3:2]
00 00, 01, 10, 11
01 01, 00, 11, 10
10 10, 11, 00, 01
11 11, 10, 01, 00

The core drives address and control information onteBheA[35:2] andEB_BE[3:0] signals at the rising edge of clock 2.
As in the single read cycle, these signals remain active until the clock edge affi#B tihdRdysignal is sampled asserted.
The core continues to driieB_AValidas long as a valid address is on the bus.

The EB_Instr signal is asserted if the cycle is an instruction fetch EBheBurstsignal is asserted throughout the cycle
to indicate that a burst transaction is in progress. The core assdti tBEirstsignal in the same clock as the first
address is driven to indicate the start of a burst cycle. In the clock that the last address is driven, the coEBa&lentst

to indicate the end of the burst transaction.

The core first samples tiieB_RData[31:0]bus one clock aftedeB_ARdyis sampled asserted. External logic asserts
EB_RdValo indicate that valid data is on the bus. The core latches data internally wHeBeRetValis sampled
asserted.

Note that at the rising edge of clock GHigure 3-5theEB_RdVakignal is sampled deasserted, causing a wait state
betweerData 2andData 3 External logic asserts ttie8_RBErrsignal in the same clock as data if a bus error occurs
during that data transfer.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

3.2 Interface Transactions

Clock # 1 2 3 4 5 6 7 8

SLClkout || | | | | | | | |

EBARdy STIN//IN// \Q/\\\
ee sz 77777) Aa X Ad XA Y R X777 7777777777777777
EB_instt ////. valid N\
EB_BE[3:0] i

EB_Burst] \\
\

EB_BFirst / I\
EB_BLast / N\

EB_AValid / \ > Driven by system logic
g

/
EB_RData[31:0] ///1// /))/ /XDatalXpata2)/ /) %MD?MSXDM%X// /////
EB_Rdval /1T NX// %Jgitf [/ XN\
EB_RBE VAR V/ARN YARY/ARN

EB_Write LT

Figure 3-5 Burst Read Transaction Timing Diagram

3.2.6 Burst Write

Burst write transactions are used to empty one of the write buffers. A burst transaction is only performed if the write
buffer contains 16 bytes of data associated with the same aligned memory block; otherwise individual write transactions
are performedrigure 3-6shows a timing diagram of a burst write transaction. Unlike the read burst, a write burst always
begins with EB_A[3:2] equal to 00b.

The core drives address and control information ontBBheA[35:2] andEB_BE[3:0] signals at the rising edge of clock 2.
As in the single read cycle, these signals remain active until the clock edge af#B tidRdysignal is sampled asserted.
The core continues to driieB_AValidas long as a valid address is on the bus.

The core asserts tiiEB_Write EB_Burst andEB_AValidsignals during the time the address is dri®. Write
indicates that a write operation is in progress. The assertieB dBurstindicates that the current operation is a burst.
EB_AValidindicates that valid address is on the bus.

The core asserts tiieB BFirstsignal in the same clock that address 1 is driven to indicate the start of a burst cycle. In
the clock that the last address is driven, the core ag&rBLastto indicate the end of the burst transaction.

In Figure 3-6the first data word{atal) is driven in clocks 2 and 3 due to tiB_WDRdysignal being sampled
deasserted at the rising edge of clock 2, causing one wait state cycle BBh®MDRdys sampled asserted at the rising
edge of clock 3, the core responds by driving the second Wattd?) at the rising edge of clock 4.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 15
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 EC™ Interface

External logic drives the EB_WBETr signal one clock after the corresponding assertion of EB_WDRdy if a bus error has
occurred as shown by the arrowd-igure 3-6

Clock # 1 3 4 5 6 7 8

SICCT 2 I
VAR7ER/EN /4 ‘\\
[/ /X Adrt X Adr2 X Adr3 X ada X/ //)/]/ i
EB BE[30] /// N\
/

EB_ARdy

EB_A[35:2]

EB_Write / / N/ 71777777777/
EB_Burst / \
EB_BFirst /— \
EB_BlLast \ > Driven by system logic
EB_Avalid |/ /
oz
EB_WData[31:0 ///X Datal }(D;taz ;(Data3;<D§tfa4 7/1/////

ite 1 Tl

EB_WDRdy ann// w;ﬁ%%@(/111
EB_WBETrT / 1T\ XX

Figure 3-6 Burst Write Transaction Timing Diagram

3.2.7 Back-to-Back Reads

Figure 3-7shows the basic timing relationships of signals during a back-to-back read transaction. During a back-to-back
read cycle, the core drives addresses for both read cycleEBn#&f35:2] and byte enable information onto

EB_BEJ[3:0]. The 4K cores always leave a dead clock between new address transactions (but address transactions within
a burst will not have the dead clock). This dead clock is not part of the EC interface specification and future cores may
not have this.

To maximize performance, the core does not define a maximum number of outstanding bus cycles. Instead the core
provides theEB_ARdyinput signal. This signal is driven by external logic and controls the generation of addresses on
the bus.

An address is driven by the core whenever it becomes available, regardless of the B&té\BidyHowever, the core
always continues to drive address until the clock éBr ARdyis sampled asserted. For example, at the rising edge of
clock 2 inFigure 3-7theEB_ARdysignal is sampled low, indicating that external logic is not ready to accept the new
address. However, the core still driieB_A[35:2]in this clock as shown. At the rising edge of the clock 3, the core
sample€EB_ARdyasserted and continues to drive the address until the rising edge of clock 4.

TheEB _Instrsignal is asserted during a read cycle if the read is for an instruction fetceH h&Validsignal is driven
in each clock thaEB_A[35:2]is valid on the bus. The core drives tBB_Writesignal low to indicate a read transaction.

16 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

3.2 Interface Transactions

TheEB_RData[31:0JandEB_RdVakignals are first sampled at the rising edge of clock 4, one clockEBeARdyis
sampled asserted. Data is sampled on every clock thereaftdfBinRidValis sampled asserted.

For the two back-to-back reads showrfigure 3-7 the first read has one address wait state. The first read has one data
wait state since thEB_RdValfor that read is sampled in clock 5, two cycles after the sampled asseEBnARdy

The second read data is returned as fast as possible, with no data wait stateEEBné&ditalis sampled in clock 6,

one clock after the sampling of EB_ARdy

If a bus error occurs during the data transaction, external logic assétf® tRBErrsignal in the same clock as
EB_RdVal

Clock # 1 2 3 4 5 6 7 8

siewoue [L L] L L] LI L] LT[

Address and Control held until clock after EB_ARdy
Addr ¥ sampled asserted

EB_ARdy ///\Wait/ /7 N ///T\
EB_A[35:2] /////X Address 1 [/Kadd2X/ /7)) /)])]])])])]/

EB_Instr,

es Bep0] //// Valid NaidX/// /)]
EB_AValid |] —> Driven by system logic
/
es_Rroata3r:0] //////////// Data; /6)612 L1111/
EB_RdVval / \

EB_RBEIr f_\ _\
EB_Wiite ////\ [/ [/////

Figure 3-7 Back-to-Back Read Transaction Timing Diagram

\l

3.2.8 Back-to-Back Writes

Figure 3-8shows a timing diagram of a back-to-back write operation. In any bus transaction the core drives address,
control, and data information onto the bus as it becomes available, regardless of the EEat&ByIf the EB_ARdy

signal is asserted at the time that the address is driven by the processor, indicating that the external agent can accept
another address, the processor can drive a new address on the following clock.

In Figure 3-8 address, control, and dat&/(ite1/Data) become available and are driven onto the bus by the core during
clock 2.EB_ARdyis sampled deasserted at the rising edge of clock 2, indicating that the external agent is not ready to
accept a new address. This causes one address wait state\inittteaddress. The processor continues to drive the bus

with theWriteladdress and control until the clock afteB_ ARdyis sampled asserted. In this caEB,_ARdys sampled

asserted at the rising edge of clock 3, allowing the processor to drive new address and control at the rising edge of clock
4. The new addres®\ite2) is not driven until the rising edge of clock 5. Sifi#® ARdywas immediately sampled
asserted, there were no address wait staté§rite2 The core might drive a new address onto the bus at the rising edge

of clock 6 (not shown).

TheEB_WDRdyignal is driven by the external agent to indicate that it has accepted the data on the bus. In this example
theEB_WDRdysignal is sampled deasserted by the core at the rising edge of clock 3, causing the core to hold the data
(Datal) during the following cycle, clock 4. The external agent asgeBsWDRdyuring clock 3, which is sampled by

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 17
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 EC™ Interface

18

the core on the rising edge of clock 4, indicating that is has accepted the data on the bus. The core continues to drive data
until one clock afteEB_WDRdys sampled asserted, so the core dridasaluntil the rising edge of clock 5. Note that
EB_WDRdwill never be sampled earlier than the rising edge in which the asso&&edRdys sampled asserted. So
if EB_WDRdywas asserted on the rising edge of clock 2 (one cycle befoeBth&RdY, it would have been ignored.

The core can drive new dafadta?) at the rising edge of clock 5. At the rising edge of clock 5 the core samples

EB_WDRdydeasserted, causing the processor to hatd?in the following cycle. At the rising edge of clock 6
EB_WDRdys sampled asserted, so the core can stop didéntg? at the rising edge of clock 7.

Clock # 1 2 3 4 5 6 7 8

coavey 777 /77 CZIZT O ITTTITTTTTTITIITITE
ST L1 i X7/ (LI ITIITIT
oo J7777] NI I
Eeavald S N

ce wossizza) 7777/X oamt) ouaz ><//////////////

Write

EB_WDRdyi 3 /// wva.y ~/ / //////////
EB_WBEN ///////////////Mahd1><//////>®ahd2></////////////

Figure 3-8 Back-to-Back Write Transactions

3.2.9 Read Followed by Write with Reordering

Figure 3-9shows a timing diagram of a read followed by write operation with the operations being completed out of
order. Since data is transferred for read and write operations on independent unidirectional busses (and their
corresponding ready indicators), the bus interface allows read and write operations to complete out of order with respect
to how the read and write addresses were initiated.

In any bus transaction the core drives address, control, and data information onto the bus as it becomes available,
regardless of the state BB_ARdyIf the EB_ARdysignal is asserted at the time that address is driven by the processor,
indicating that the external agent can accept the address, the processor can drive a new address on the following clock.

In Figure 3-9 address and control for the read operation become available and are driven onto the bus by the core at the
rising edge of clock 2. The external agent BBs ARdyasserted so there are no address wait states for the read. The
processor continues to drive the bus until one clock BerARdyis sampled asserted. After a dead clock, the write
address and control information are driven at the rising edge of clock 4. The external agerEBsa&thsfor an

additional clock, which is sampled by the core at the rising edge of clock 4, so the core could have driven a new address
(not shown) at the rising edge of clock 6.

In this example, the external agent assert&EBeWDRdysignal at the rising edge of clock 4, indicating its ability to
accept the write data, even though the read operation has not completed. The core drives write data for one clock after
EB_WDRdyhas been sampled asserted. This causes the processor to drive data until the rising edge of clock 5.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

3.2 Interface Transactions

In this example read data is driven onto the bus during clock 5, one clock after the write operation has completed. The
core samples theB_RdVakignal asserted at the rising edge of clock 6, causing the processor to latch the data and
terminates the read cycle. Note that it is the responsibility of the external agent to ensure the correct data is returned when
re-ordering data transactions.

Clock # 1 2 3 4 5 6 7 8

ST I N I I I
EB_ARdy ///) XL/ XL
EEBB‘_/;[EE%] 777X read X[/ /X Wrie X777]]]]]]]]]/ /
EB_write - \\\\\\) N
EBAvaid /N / O\
Es_Roaw3101 ////////////////// /1RO [/ /) /[/ [/]/

EB_Rdval [l XL
es_Reer //////// /1111 TR A1

es_woatal310] ////////////[//XwoaeX/ [/ 1/ [/ 1/ /] /1))

P
B WoRey & T
es ween //77777777777777 6717777777771 7777777777

Figure 3-9 Read Followed by Write Transaction with Reordering

3.2.10 Write Followed by Read with Reordering

Figure 3-10shows a timing diagram of a write followed by read operation with the operations being completed out of
order.

In any bus transaction the core drives address, control, and data information onto the bus as it becomes available,
regardless of the state BB_ARdyIf the EB_ARdysignal is asserted at the time that address is driven by the processor,
indicating that the external agent can accept the address, the processor can drive a new address on the following clock.

In Figure 3-10Q address, control, and data for the write operation become available and are driven onto the bus by the
core at the rising edge of clock 2. The processor continues to drive the address and control busBe#\ Rualjis

sampled asserted. SiNE8_ARdywas not sampled asserted at the rising edge of clock 2, an address wait state results.
The assertion dEB_ARdyis sampled at the rising edge of clock 3, causing the processor to drive the write address and
control until the rising edge of clock 4. The read address and control are then initiated on the bus at the rising edge of
clock 5. Note that a new address (nhot shown) could have been driven on the bus at the rising edge of clock 7.

In this example the external agent drives read data and asseHB tirdVakignal in clock 5, indicating that valid read
data is on the bus, even though the write operation has not completed. The core latches the read data at the rising edge
of clock 6, thereby completing the read operation.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 19
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 EC™ Interface

By default, the core drives write data at the same time as the write address and continues to drive data for one clock after
EB_WDRdyis sampled asserted. This causes the processor to drive data in clocks 2 - 7. In this example, the external
agent assertSB_WDRdyin clock 6 and is sampled active by the core at the rising edge of clock 7, one clock after the
read operation has completed. The core continues to drive data until the rising edge of clock 8 and the write operation is
completed. Note that it is the responsibility of the external agent to ensure the correct data is returned when re-ordering
data transactions

Clock # 1 2 3 4 5 6 7 8

SRe eI A I A I B e

es ardy ///\ /// N[/L/LL) N
o semo) /777X wine _ X777/XReas X/77777777777777
es_wite ////// NNV
EB AVald /T N\ /N
es Roawist0l ////////////////// /1)) XRoaaX/)/ /) /)] /)]]/

=B_Rdval /) L
e_Reer /////////111 LT [/ /[][]]]

EB_WData[31:0] /////X Write Data X/'////////

EB_WDRdy /\j
) AN XL
s weerr ///// /11 /1111 LYK]

Figure 3-10 Write Followed by Read Transaction with Reordering

3.3 Outstanding Transactions

The EC interface itself does not limit the number of transactions which may be active at any time. Instead, the number
of external transactions can be throttled via control oEBe ARdynput. This input indicates that the external controller
can accept a new transaction.

The bus interface implementation of the 4K core contains enough buffering to allow a maximum of 16 transactions to
be active simultaneously, as follows:

» Four bursted instruction reads

» Four bursted data reads

* Eight writes to a single 16B line in SimpleBE mode

20 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

3.4 Sequential Transactions

When designing a generic EC interface controller, keep in mind that other MIPS processor cores designed to the EC
interface may allow a different number of transactions to be active.

3.4 Sequential Transactions

The 4K cores always leave a dead clock between address transactions to a new line. There is not a dead clock between
the beats of a bursted transaction or between mutliple writes to the same 16B line. This dead clock is not required by the
EC interface specification. When designing a generic EC interface controller, keep in mind that other MIPS processor
cores may not have this dead clock.

Back to back read accesses of the same type (Instruction or Data) will have an additional timing constraint. Only one
request of a given type is allowed to be outstanding. Therefore, the second address will not come out onto the bus until
atleast 1 cycle after the last read data for the first address was returned. Again, this behavior is not part of the EC interface
specification and should not be relied on in a generic EC interface controller.

3.5 Write Buffer

The write buffer is organized as two 16 byte buffers. Each buffer contains data from a single 16 byte aligned block of
memory. One buffer contains the data currently being transferred on the external interface, while the other buffer
contains accumulating data from the core.

Data from the accumulation buffer is transferred to the external interface buffer under one of the conditions:

» When a store is attempted from the core to a different 16-byte block than is currently being accumulated.

* SYNC instruction. TheCACHE instruction performs an implicBYNC.

* Store to a invalid merge pattern.

» Any stores to uncached memory.

A load to the line being merged.

Note that if the data in the external interface buffer has not been written out to memory, the core is stalled until the
memory write completes. After completion of the memory write, accumulated buffer data can be written to the external
interface buffer.

3.5.1 Merge Pattern Control

All 4K cores implement two 16 byte collapsing write buffers that allow byte, half-word, or word writes from the core to
be accumulated in the buffer into a 16 byte value before bursting the data out onto the bus in word format. Note that
writes to uncached areas are never merged.

The core provides two options for merge pattern control:
* No merge

» Full merge

The merging option is selected by tBe MergeMode[1:0]jnput. The encoding is shown Table 2-3 on page. 4

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 21
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 EC™ Interface

3.5.1.1 No Merge
In No Mergemode writes to a different word within the same line are accumulated in the buffer. A burst write transaction

occurs when the buffer becomes full (4 words). Stores to the same word cause the previous word to be driven onto the
bus.

3.5.1.2 Full Merge

In Full Mergemode all combinations of writes to the buffer are allowed.

3.5.1.3 SysAD Merging

In earlier versions of the core, a SysAD merge mode was supported. This prevented any transactions that would not be
supported on a SysAD style bus (naturally aligned byte, half, or word, or tribyte requests). This mode was removed when

SimpleBE mode was added because the allowable SimpleBE byte enables are a subset of the allowable SysAD byte

patterns. Full merging and SimpleBE mode should be used in place of SysAD mode.

3.6 SimpleBE Mode

22

The merging write buffer and even individual load and store instructions can generate bus transactions with byte enable
patterns that are not directly supportable on other bus standards. To facilitate connection to these types of buses, the core
has a mode where it will only generate bus transactions that are naturally aligned bytes, halfwords, or words. This is
referred to as SimpleBE mode, selected wBérSimpleBE[1:0]s set to 0%. The default mode for the EC interface, in

which the full range of byte enable combinations may occur, is selected 8lIh&mpleBE[1:0]s set to 09. Note that
theSl_SimpleBbbus is a static input which must be set to DC values at power-up of the core. The other two possible
values ofSI_SimpleBEre currently reserved and should not be selected.

Allowable byte enables in SimpleBE mode are showreinie 3-3

Table 3-3 Allowable Byte Enables in SimpleBE Mode

EB_BE[3:0] (binary)

0001

0010

0100

1000

0011

1100

1111

The only load instruction that attempts to generate a complex byte enable combination is an uncached LWL/LWR
instruction requesting a tri-byte from memory. In SimpleBE mode, this transaction will be turned into a word request on
the bus. When the full word is returned, the core will only use the appropriate 3 bytes. In normal mode, load operations
to uncached space are always for the exact bytes requested. In SimpleBE mode, however, uncached tri-byte loads are
turned into a full word request, the memory system must be capable of tolerating an uncached request to the fourth byte
which won't actually be used by the core.

Merging stores or SWL/SWR instructions can also attempt to generate complex byte enable combinations. When a write
transaction with complex byte enables is detected internally, the core will split the write into two transactions on the bus.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

3.7 External Write Buffers

Each transaction meets one of the byte enable combinations shdabiar8-3 one with the upper two byte enables
deasserted and one with the lower two deasserted.

The setting ofSI_SimpleBEs independent of the value f&_MergeModeFor example, the full merging option could
be chosen foBl_MergeModgewhile SimpleBE mode is selected 8k SimpleBE

3.7 External Write Buffers

Some systems may have external write buffers to increase bus efficiency and system performance. The core has a
two-signal interface which can allow software to have some control over the external write buff@¥Nihe

instruction is intended to form a barrier between load/store instructions before and after it in the instruction stream. Upon
execution of &YNC instruction, the core will complete all pending read requests and flush the internal write buffer. The
core will also assefEB_WWBHo signal to the system that it is Waiting for the Write Buffer Empty signal. SH&IC
instruction will not complete until thEB_ EWBEnNput is asserted.

In most systems you can tie tk8_EWBEsignal high. Just using tHeB_WWABEsignals does not ensure coherency. If

a write is in the external write buffer the core can generate a read request to the given address without asserting
EB_WWBHEbecause the core has no knowledge of the external write buffers). Therefore, any write buffers in the system
must maintain coherency with reads.

TheEB_WWBE/EB_EWBIhterface can be used to me&k€NCs “harder” by forcing the flush of the external write
buffers. This is a system/SW design issue - you need to decide what if anything you want the system to d8 Yi€n a
instruction is executed (and the same will be done for other synchronizing instructions GAGHIS).

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 23
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 EC™ Interface

24 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4

EJTAG Interface

This chapter discusses chip-level integration details for the EJTAG-related pins on a 4K core, as well as some system
level requirements. A comparison of EJTAG versus JTAG is covered first, to clarify the differences and similarities. Then
EJTAG chip and system issues related to one or multiple 4K cores within a single chip are discussed.

The EJTAG TAP controller is an optional feature in a 4K core. If your 4K core does not contain the EJTAG TAP
controller, then most of this chapter is irrelevant.

A reference to the general “EJTAG Specification” can be found several times in this chapter. The full title of this
document i€£JTAG Specification, Revision ZMIPS Document Number MD00027). MIPS recommends that you
become familiar with the general EJTAG Specification in addition to this chapter, before deciding how to integrate
EJTAG into your chip.

4.1 EJTAG versus JTAG

The name EJTAG is often confused with IEEE JTAG boundary scan, but EJTAG is not related to boundary scan. EJTAG

is a set of hardware-based debugging features on a MIPS processor, which are accessible by debug software. EJTAG is
used by software programmers to control and debug code execution, as well as to access hardware resources within a
MIPS processor, during code development. The interface for EJTAG access to the core does use a super-set of the JTAG
TAP interface, but that is really its only similarity with boundary scan.

Please read the “EJTAG Debug Support” chapter inMieS32 4K™ Processor Core Family Software User’'s Manual
to learn more about the software debugging capabilities of EJTAG.

4.1.1 EJTAG similarities to JTAG

From a functional viewpoint, the following features are inherited from the JTAG TAP interface:

 Protocol for selecting data and control registers usthgrTMS

» Serial protocol for transmitting data into and out of the selected registerBkifi@plandEJ_TDQ

» Asynchronous reset to the EJTAG TAP controller u§idgTRST _NTRST?.

» EJ_TCKdriving the clock input of all the EJTAG TAP controller registers.

Because of these similarities it is possible to share certain physical resources between the TAP controllers in EJTAG and
JTAG. MIPS generally recommends NOT sharing any logic or pins between JTAG and EJTAG. However MIPS does

recognize that reducing pin count is often necessary in large SOC chip designs. The following section will discuss this
issue further.

4.1.2 Sharing EJTAG resources with JTAG

It is theoretically possible to share the TAP controller for JTAG and EJTAG functionality, because the EJTAG control
commands do not use reserved JTAG commands. This TAP sharing is not supported by the 4K core, however. The 4K
core has its own independent TAP controller, reserved exclusively for EJTAG operation.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 25
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 EJTAG Interface

26

Because the EJTAG electrical specification is identical to the JTAG specification, it is possible to share the physical chip
pins between the two TAP controllers for EJTAG and JTAG. There are two ways this might be accomplished, but both
of them have issues which must be considered.

4.1.2.1 Daisy chained TDI-TDO

One method is to hook up the physical pitK, TMSandTRST*in parallel to both TAP controllers, and then daisy
chain theTDI/TDO pins in the following manner:

 physical pinTDI to JTAGTDI

+ JTAGTDOto EJTAGEJ_TDI

» EJTAGEJ_TDOto physical pinfDO. And EJTAGEJ_ TDOzstatéo output enable of physicaDO.

Figure 4-1show the serial TDI-TDO chain setup with parallel control of the TAP controllers.

SOC_CHIP

CHIP JTAG TAP

TRST*
TCK »

TDI

TDO <=

—
Py
(7))
1

*

_|
<
(0]
]

l | Yvy
_|
<
(0]

EJTAG TAP

EJ_TRST_N
EJ_TCK
EJ_TMS
EJ_TDI
EJ_TDO
EJ_TDOzstate

YYVYY

Figure 4-1 Daisy chained TDI-TDO between JTAG and EJTAG TAP controller
Some EJTAG debug tool-chains can handle this configuration. You can identify that there is another TAP controller in
the path to the EJTAG TAP controller. And then tell the debug software the following items:
« the Instruction word length of the JTAG TAP controller
« the Instruction word command to select the bypass register (usually all 1's)
« the length of the bypass register (usually one hit)

This will enable the debugger to always select the bypass register within the JTAG TAP controller during EJTAG access,
and compensate for the bypass register length.

The main problem here is the presence of the serial EJTAG TAP controller in the JTAG TAP path; automatic JTAG
test-benches generally do not like the visibility of another TAP controller inside the chip. MIPS strongly recommends
NOT using the setup iRigure 4-1for sharing TAP controller external pins between an EJTAG TAP and a JTAG TAP.

4.1.2.2 Multiplexed pin access

A select signal can choose which TAP controller has access to the physical pins. How you wish to gate off the inputs of
the un-selected TAP controller depends on the presence of an asynchronous resetHigoue #:2a setup which
anticipates the existence BRST*on the “CHIP JTAG TAP” controller is shown.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

4.2 How to connect EJ_* pins

SOC_CHIP
TAPSelect CHIP JTAG TAP
*
B b
™ - DI
1l TDO
Tbo Ol TDO_OEN
]|
0 4K core
j }-»| EJ_TRST_N
EJ_TCK
EJ_TMS
EJ_TDI
EJ_TDO
EJ_TDOzstate

Figure 4-2 Multiplexing between JTAG and EJTAG TAP controller

TAPSelecin Figure 4-2is shown as an SOC_CHIP external input, and NOT as internal logic or registered signal. This
is so for two important reasons:

1. When doing board level interconnect testing. The JTAG controller should be able to work the boundary scan
without any other controlled pins beyond the five JTAG pins.

2. When the board holding the SOC_CHIP is used for software development, EJTAG must be functional on the TAP
controller while the 4K core (and thus probably the entire SOC_CHIP) is held in reset. During reset, EJTAG
commands can initialize the 4K core to leave the reset state in Debug Mode, and thus the debug interface can
control the 4K core before the it attempts to fetch the first instruction.

The two reasons above also imply ti&PSelecinust be valid and fixed while using either of the two TAP controllers.
For system integrityTAPSelecshould also be kept valid while there is no probe connected to the TAP Probe Connector.
One small implication to this is, that tiH&APSelecinput can not be tested by JTAG boundary scan. It might be wise to
NOT have boundary scan include th&PSelectnput logic. This is, however, the only problem in this shared TAP
controller configuration. A two-way jumper on the PCB could be created to select the fixed TfeRSefect

If pin sharing between EJTAG and JTAG TAP controllers is absolutely unavoidable, MIPS recommends the
implementation shown iRigure 4-2

4.2 How to conneciEJ_* pins

In the previous section, issues concerning the sharing of EJTAG TAP and JTAG TAP pins were discussed. This section
assumes that your chip has a separate set of EJTAG TAP pins. Other non-TAP EJTAG pins on the 4K core will require
separate pins on the chip, but most do not. This section will discuss how to connedtalPthms in your chip.

4.2.1 EJTAG chip-level pins
The EJTAG TAP pins on the 4K core aket_TCK, EJ_TMS, EJ_TDI, EJ_TRST_N, EJ_T&»OEJ_TDOzstateAn

extra signaEJ_DINT(Debug Interrupt) can also be connected to an externdrigire 4-3shows the intended
connection to the chip. Pin names for the chip have been chosen as the usual JTAG TAP pinsEiviteéir. “

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 27
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 EJTAG Interface

28

SOC_CHIP
4K core
Probe Connector EDINT: > Optional »{ EJ_DINT
DINT Optional VDD —s=| EJ_DINTsup
<« EJ_DebutM
TRST* Optional ETEFEFSCT|2= - Optional »| EJ TRST N
TCK > » EJ_TCK
T™S ETMS,| »| EJ_TMS
DI ETDI, |, »| EJ_TDI
TDO |« ETDO | ¢ T« EJ_TDO
EJ_TDOzstate
RST* —L Sysem RESET [: Chip Reset
Reset logic

Figure 4-3 EJTAG chip-level pin connection

AC timing characteristics for thETDOdriver and the input buffers can be found in the “EJTAG Specification”, Section
7.2 “AC Timing Characteristics”. In particular notice here that all the probe pins must have pull-up or pull-down logic
attached. As shown iRigure 4-3 all the chip-level pins have corresponding pins on the EJTAG Probe ConriREfbr.

is special though, because an assertion (low active) on this pin must result in a system level reset. Figase gké

for further details on EJTAG-related reset circuitry.

4.2.1.1 OptionalETRST* pin

TheETSRT*in an optional input pin on the chip. However it is strongly recommended th& TRST*pin be present.

If you choose not to include this pin, you will need on-chip logic which as&&ItS RST_Mt power-up. This assertion
can ONLY happen on power-up, or at cold-start. Any soft reset of the chip and 4K core must not affect THST_N
signal. Special timing also applies to the deassertidtJofTRST_NPlease refer to “EJTAG Specification”, Section 6.3
“Optional TRST*Pin” for more details.

4.2.1.2 OptionalEDINT pin

The EDINT input pin is also optional. An assertioneaf_DINTin the 4K core triggers a Debug Interrupt Exception.

This will stop the normal program flow within the 4K core, and force it to the Debug Exception Vector. The same effect
can be achieved by setting the EjtagBrk Bit in the EJTAG Control Register. You access EJTAG Control Register through
the TAP controller pins, but it will take maT CK clock periods to do this.

The difference is that asserting tBé DINTinput has much lower latency, and gives you faster control over forcing the
processor into Debug Mode. If you do not need fast entry into Debug Mode, you can reniEDENR@in from the
chip.

EJ _DINTon the 4K core may also be connected to on chip logic, i.e. in a Multi-Core Breakpoint URig(seet-5
on page 3fbr more details). You should only assert (high-active BheDINTsup(EJTAG Debug Interrupt Pin
Supported) input on a 4K core if you have Eie DINTinput connected to tHeINT pin of the Probe Connector. You
will not disable theEJ_DINTinput if you de-assert theJ DINTsupnput.EJ_DINTsups only used to set the DINTsup
bit in the EJTAG Implementation Register.

If you do not plan to conne&)_DINTon the 4K core to an interrupt source, you must deasserEBofDINT and
EJ_DINTsupby connecting them to logic zero.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

4.2 How to connect EJ_* pins

4.2.2 EJTAG Device ID input pins

The Device ID Register in the EJTAG TAP controller gets its values directly from thEpihdanuflD[10:0]
EJ_PartNumber[15:0pndEJ_Version[3:0] If these pins are not already tied off to specific values by a hard core
provider, the integrator is free to choose what values to plaEd dPartNumber[15:0pndEJ_Version[3:0]

4.2.2.1 EJ_ManuflD[10:0]

EJ_ManufID[10:0]must be a compressed form of a JEDEC standard manufacturer’s identification code. See “EJTAG
Specification”, section 5.5.2 “Device Identification Register”.

4.2.2.2 EJ_PartNumber[15:0]

EJ_PartNumber[15:0]s recomended to be a manufacturer specific number identifying this core as a MIPS 4K core. A
new physical cache configuration could facilitate a new valueJofartNumber[15:0] but it could also be an
increment of the number on tBd_Version[3:0]input.

4.2.2.3 EJ_Version[3:0]

EJ_Version[3:0]is recomended to be unique for each new physical layout, with the EdnféartNumber[15:0]nput.

4.2.3 EJTAG Software Reset pins

Two reset-related EJTAG outputs are controlled by corresponding bits in the EJTAG Control Register. Peripheral Reset
(EJ_PerRstis controlled by the PerRst bit. And Processor R&EtRrRs} is controlled by the PrRst bit.

One other software reset-related pin is the Soft Reset EfablSRstE This pin is driven from the SRE bit in the
Debug Control Register (The DCR is a memory mapped register present within the 4K core, which is accessible in
Debug-Mode).

4.2.3.1EJ_PrRstpin
Processor Reset should really be interpreted as “System Soft Reset”. When the PrRst bit is asserted, by EJTAG debug
software, the result must be one of two possible scenarios:

1. The entire system is reset. This could be achieved by connEdtiRgRstto chip (internal or external) soft reset
logic.

2. Nothing happens. Eith&J_PrRsis left unconnected, or the assertion is gated of by other logic likEdh&SRstE
pin.

A protocol exists, using the Rocc (Reset Occurred) bit, for debug software to identify which of the two scenarios occurs.
Figure 4-4shows one possible implementation for the udeJofPrRst

4.2.3.2 EJ_PerRstpin

Peripheral Reset can be used as a soft reset of the peripherals surrounding the 4K core. The effect of an asserted
EJ_PerRspin is implementation dependent. However it should never result in a reset of the 4K cofedisedf4-4
show one possible implementation of the usEbfPerRst

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 29
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 EJTAG Interface

4.2.3.3 EJ_SRstEpin

As described earlier, this pin can be used to control one or more Soft Reset sources in the system resetfogiceSee
4-4for a possible implementation.

4.2.3.4 One possible Reset Logic implementation
Figure 4-4show a possible implementation of th8 PrRstEJ PerRsandEJ_SRstpins in a system. Note that in this

example all the Reset control logic is place outside the chip containing the 4K core. This requires 3 extra output pins,
but this need not be the case in your system.

SOC_CHIP

Chip Reset 4K core

»| RESET MIPS_4K_RESET »| SI_ColdReset

OTHER_RESET [—»

\
\

Optional _ PRRST

- EJ_PrRst
Optional | PERRST EJ PerRst
Optional| _ SRSTEN EJ_SRstE
EJTAG
Probe
Connector Reset Logic
DINT . % 5\ Periph Soft Reset
TRST* B
TCK - » \ Soft Reset
TMS Other Soft 3@—» J
TDI Reset Sources
TDO Hard Reset %\/ Hard Reset
. Sources %
RST 'PROCESSOR_RESET[Timer Hold
- Reset
Peripheral PERHIP_RESET Timer Hold
devices reset ‘ Reset

Figure 4-4 Possible Reset circuitry implementation

Note: TheRST*input to the Reset Logic from the Probe Connector is a required connection, when implementing EJTAG
into your system.
4.3 Multi-Core implementation

In a chip configuration with multiple 4K cores, all the EJTAG TAP controllers can share one set of EJTAG TAP controller
pins. The MIPS-recommended daisy-chain connection for a Multi-Core configuration is sheiguaré4-5

30 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

4.3 Multi-Core implementation

SOC_CHIP
4K core Multi-Core
Breakpoint Unit
Master
ETRST* s———» EJ TRST_N
— - EJ_DebugM >

ETCK EJ TCK _ g DebugM_0
ETMS > EJLTMS EJ_DINT | DINT_O

ETDI » EJ_TDI

ETDO — EJ_TDO
- EJ_TDOzstate

4K core

EJ_TRST_N
EJ_TCK EJ_DebugM »{ DebugM_1

EJ_TMS <

EJ_TDO
EJ_TDOzstate

! |+VVV

» EJ_TRST_N
» EJ_TCK

» EJ_TMS

— EJ_TDI
EJ_TDO

EJ TDOzstate

EJ_DebugM » DebugM_n

EJ_DINT = DINT_n

EDINT (> »| DebutM_Ext

Figure 4-5 Multi-Core Implementation

4.3.1 TDI/TDO daisy-chain connection

In a Multi-Core implementation one of the processor cores will often be the Magtgguie 4-5the Master core has

been put at first in th&DI/TDO daisy-chain. This is done to get a low latency access to control and data registers in the
Master core. Only if a large number of EJTAG TAP controllers are connected in the daisy-chain, will the placement of
the Master core be of any significance.

Output enable of the chipTDQ, is only controlled bfJ_TDOzstat®f the last core in the chain. This must be so
because this is the core which actually driveTtB®© chip pin.

4.3.2 Multi-Core Breakpoint Unit

The Multi-Core Breakpoint Unit (MCBU) shown to the rightkigure 4-5 is an implementation-dependent block. The

idea here is that each core could signal whether or not it is in Debug Mode, baseB&nsbugMutput. When doing
Multi-Core debug, a low latency entry into Debug Mode may be desired for all or some of the other processor cores on
the chip, based on the entry of one of the processors into Debug Mode. For example, a slave core might rely on full
operation by the master core; then the master core’s entry into Debug Mode can trigger a Debug |E2riiNT) to

the slave core(s). This would place each slave core in Debug Mode with low latency after the master core entered Debug
Mode. (Depending on implementation, the latency would be less than 10 cycles.)

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 31
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 EJTAG Interface

32

Debugger software can of course detect that the master core has entered Debug Mode, and then trigger this for the slave
core(s) also. This might or might not be supported by your Debug software as an automatic feature. Further more the
detection and the following slave core(s) debug trigger, would have to go through the serial TAP controller chain, which
could take hundreds of cycles before the slave core(s) enter Debug Mode.

The physical implementation and/or programmability of the MCBU is a system decision beyond the scope of this
document. However one thing to keep in mind, if you design an MCBU, is th&ihBebugMsignal is a level sensitive
signal andeJ_DINTis rising edge-triggered. Creatindd&NT_xsignal from a simple OR-function of one or more
DebugM_xsignals, will not have the desired effect. A rising edge detectiorDaibagM_xoutput signal is needed to
generate the desired rising edge ddlBIT_xinput signal. Once in Debug Mode, the 4K core will ignore any subsequent
Debug Interrupts o&J_DINT

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5

Performance Monitoring Interface

This chapter describes the Performance Monitoring(PM) interface, which is present on a MIPS32 4K™ processor core.
This interface allows a system designer to implement performance counters which can be used for profiling software and
hardware performance.

The specific pins on the interface are prefixed With , and were introduced @hapter 2, “Signal Description,” on
page 3This chapter includes further details about the use of the PM interface, and contains the following major sections:
» Section 5.1, "PM Interface versus Performance Counters"

» Section 5.2, "Interface Protocol"

5.1 PM Interface versus Performance Counters

The PM interface is a replacement for the Performance Counters present on some other MIPS processors. Performance
counters are typically configurable to allow the counting of a variety of processor events. The counters are included in
Coprocessor 0 and can be read and configured by kernel routines. Monitoring software can periodically read the
registers, or they can be configured to signal an interrupt when the counter overflows. Frequently, multiple counters are
implemented so that the relative frequency of different events can be compared over a large sample set - for example the
ratio of D-cache hits to misses, or the ratio of micro TLB misses to instructions completed.

The PM interface was implemented instead of Performance Counters for a number of reasons:

» The area associated with the counters can be avoided if counters are not desired.

» The integrator has more flexibility for choosing the number and type of counters, as well as system access to them.
» The added pin bandwidth required is not a significant cost on a core (assuming that any counters will be implemented

on-chip).

More general information about Performance Counters can be found in the MIPS32 architecture dodlir&s2™
Architecture For Programmers Volume Ill: The MIPS32™ Privileged Resource Architést@0090). Another
reference is the User's Manual of a processor implementing Performance Counters suthiBS8%5Kc™ Processor
Core Software User's Manu@MD00012).

5.2 Interface Protocol

The PM interface is rather simple. Each of the pins, when asserted high, indicates that a particular event has occurred
within the core. A pin will be asserted for one cycle for each event. For example, an instruction cache miss will cause
PM_ICacheMisgo be asserted for one cycle even if the miss is stalling the core for many cycles. Signals will only be
asserted once for each instruction that is executed. Counting a specific event simply requires adding an incrementer of
the desired width that updates once per cycle when that signal is high.

It is important to note that the PM signals do not travel down the instruction pipeline This has two implications:

1. The signals associated with a single instruction may come out in different cycles depending on which pipe stage
they were detected in.

2. Events from early stages of the pipeline will be reported even if the instruction takes an exception.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 33

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Performance Monitoring Interface

5.2.1 Events

The following events are available on the PM interface, independently for the instruction and data sides of the core:

» Cache hit and miss. One of these signals asserts whenever a cacheable access occurs. Uncacheable accesses due r
assert these signals.

» Micro-TLB hit and miss. One of these signals asserts whenever a valid micro-TLB access occurs to a mapped
address. They will never assert for unmapped addresses, or on cores with no TLB.

Additionally, these general events are also available:

* Instruction complete indication. Asserts whenever an instruction completes at the end of the pipeline. Instructions
which are killed due to exceptions will not cause an assertion of this signal, but could result in assertion of the other
PM signals since they are generally reported earlier in the pipeline.

» JTLB hit and miss. One of these signals asserts whenever a valid JTLB access occurs. The DTLB and JTLB are
always accessed in parallel, so a DTLB hit will always produce an assertion of the JTLB hit signal as well. When
either the | or D micro-TLBs miss, the JTLB will be accessed and result in either a JTLB hit or miss assertion. For
cores with no TLB, these signals will never assert.

» Write buffer merge or no merge. One of these signals asserts whenever a store is presented to the merging write
buffer.

For the hit/miss style PM signals, the hit rate can be expressed as follows, based on counts from the coupled hit/miss
events:
(No. of hits) / (No. of hits + No. of misses)

Similarly, the miss rate can be expressed as:
(No. of misses) / (No. of hits + No. of misses)

The JTLB ratios may be more meaningful if ITLB hits are included in the sum of events, since an ITLB hitimplies that
there was a mapped address that did not access the JTLB, but would have hit. So the JTLB hit ratio could be expressed as:
(No. of JTLB hits + No. of ITLB hits) / (No. of JTLB hits + No. of JTLB misses +
No. of ITLB hits)

Then the JTLB miss ratio is:
(No. of JTLB misses) / (No. of JTLB hits + No. of JTLB misses + No. of ITLB hits)

Another interesting ratio is events/instruction:
(No. of events) / (No. of instns)

5.2.2 Example Instruction Sequence

Table 5-1 shows several instructions being executed and the corresponding values on the PM interface. A “-” for the
value indicates that the value is dependent on instructions not shown in the sequence. The following sequence of
instructions are executed in the example:

1. ADD - hits in ITLB, misses in the I-cache

SW - hits in ITLB/I-cache and DTLB/JTLB/D-cache, does not merge in WTB
LW - hits in ITLB/I-cache, misses in JTLB/DTLB causing an exception

SRL - hits in ITLB/I-cache

ADD - hits in ITLB, misses in I-cache

o o M 0w N

First instruction of exception handler, hits in I-cache (no ITLB access)

34 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

5.2 Interface Protocol

Note that even though instructions 3-5 are killed by the exception, the PM signals are still asserted for events at the
beginning of the pipeline (I-cache/ITLB).

Table 5-1 Performance Monitoring Example

Instn Pipe Stage
Add I 11 1 EM AW
SW I E M AW
LW - (takes TLBL exc.) I EMMAW
SRL I E EMAW
Add [
Exc. Handler
Signal Value
PM_DCacheHit - - - -
PM_DCacheMiss - -
PM_ICacheHit - -
PM_ICacheMiss - -
PM_InstnComplete - -
PM_ITLBHit -1 0
PM_ITLBMiss - 0
PM_DTLBHit - - -
PM_DTLBMiss - - -
PM_JTLBHit - - -
PM_JTLBMiss - - -
PM_WTBMerge - - -
PM_WTBNoMerge - - -

m
<
>
=

R| O 1
ol Of
o|oOlo|©
o|o|lof|l o
o|r|[O)| O
o|r|O)| O

Olo|r|O|O
Ll
'
'

o|lo|lo|9|lo|©o

o|lo|lo|o|o|C|lo|
o|lo|lo|o|o|C|lo|r
o|lo|lo|o|lo|o|o]|r
o|lo|o|r|o|lr|o|r
Rrlo|lr|o|lo|o|o|r|r|lo|r]|o
o|lo|lr|o|lr|o|lo|o|r|r|olo|o
o|lo|lo|o|o|o|o|o|o|o|olo|o
o|lo|lo|o|o|o|o|o|o|o|o|lo|o
o|lo|lo|o|o|o|o|o|o|o|o|lo|o
o|lo|o|o|o|o]| '
olo|o|o|lo|o]"
.
.
.
.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 35

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Performance Monitoring Interface

36 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 6

Simulation Models

This chapter discusses the simulation models included in your MIPS32 4K™ core release. It contains the following
sections:

» Section 6.1, "Bus Functional Model"

» Section 6.2, "Cycle-Exact Simulation Model"

6.1 Bus Functional Model

The MIPS32 4K™ core Bus Functional Model (BFM) is intended to provide the user with an abstracted version of the
external interface of the 4K core. It's purposes is to provide a simple, highly controllable model of EC™ interface
transactions. The BFM provides two mechanisms for managing transactions. A script file can be provided describing the
transactions can be provided or the HDL testbench can make task calls to control the sequence of transactions. The
following sections describe the function and interfaces for the BFM script sequencer, the HDL interface and the Jade
core BFM verilog module.

The BFM is provided provided as a seperate release package and is more fully documented there.

6.2 Cycle-Exact Simulation Model

A VMC™ model is available if cycle-exact simulation is required. VMC is a tool from Synopsys that compiles RTL into
a protected binary executable. This resulting executable can then be linked into a SWIFT R41 compatible RTL simulator
to simulate a MIPS32 4K™ processor core.

6.2.1 Installing the VMC Model
1. The 4K VMC model is supported on the Sun Solaris UNIX and x86 RedHat Linux platforms.

2. The Jade VMC model is a SWIFT R-41 compatible model. This model can be loaded into a site-wide R41
LMC_HOME tree or into its own stand-alone LMC_HOME tree. As appropriate, set the LMC_HOME
environment variable to the location you want the installation to reside:

% setenv LMC_HOME <your_install_path>
3. Now invoke the admin install tool, which is supplied in the top level of the release package for the VMC model:
% $JADEHOME/vmc{_sun,_linux}/jade_vmc_release/sl_admin.csh
A dialog box labeled “Install From...” should pop up.
Make sure the text input box points to the package, “jade_vmc_release”.

Press “Open” to continue.

A

Now you should get another dialog box used to select the models that will be installed. You should only see one
choice available in this release, a model called “jade_vmc_model” followed by a version number. Click on that
model to bring it into the “Models to Install” window.

5. Click “Continue” to close this dialog box.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 37
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Simulation Models

38

6. Another dialog box to select the platforms for this model installation will appear. Each release package will
only contain the model for one platform and that check box should be selected. The appropriate simulator
packages used under the “EDAV Packages” heading also need to be specified. Both Verilog-XL and
NC-Verilog are covered by the “Cadence Design Systems” push button. Modelsim and VCS have their own
buttons. Multiple EDAV packages can be selected and the packages for all simulators that will be used should
be selected. Push the “Install” button to continue.

7. You should get an “Install complete” message in the main message window and you can exit from the sl_admin
tool.

4. During the installation, a documentation directory will be creatflL sC_HOME/doc There are pdf files in this

directory structure which contain additional details about the install process, administering and using
SmartModels, and licensing.

5. The 4K VMC model requires a GLOBEtrotter FLEXIm license in order to run. You can get this license from MIPS
through your IP vendor. For details on how to install the license, see the “Network Licensing” chapter of
$LMC_HOME/doc/smartmodel/manuals/install.pdf.

6. For Linux installations only: A directory needs to be added the LD_LIBRARY_PATH to make the VMC model
work.

« $LMC_HOME/lib/x86_linux.lib
% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux:$LD_LIBRARY_PATH

6.2.2 Verifying the VMC Installation

A utility called swiftcheck is available in the VMC installation to ensure that your model, environment variables and
FLEXIm license key are set up properly. You should run this command before attempting to simulate with the 4K VMC
model. Invocation is as follows:

% $LMC_HOME/bin/swiftcheck jade_vmc_model

The fileswiftcheck.out will be produced by the command. You should check it to verify that there are no errors
as reported at the end of the file.

6.2.3 SWIFT Template Generation

In order to instantiate the Jade VMC model in your RTL simulation environment, you need to create a SWIFT template
of the 4K VMC model, which is then instantiated in your RTL design. This template file provides a conversion from the
VMC model to your simulator's SWIFT interface. The SWIFT template is simulator-specific, so your simulator
documentation should provide additional details on creating a SWIFT template and including the template in your
design.
To create a SWIFT template under Synopsys VCS, the following command can be used:

% vcs -Imc-swift-template jade_vmc_model
To generate a SWIFT template for Verilog-XL, NC-Verilog, and ModelSim, a script caigdwhich is included in the
$LMC_HOME/bin area of your installed VMC area is used. The invocation is:

% vsg -z jade_vmc_model
For reference, two SWIFT templates for the 4K VMC model are included in each release, under the directory

vmc/jade_vmc_release/readme/swift_template . Templates are included for the VCS and Verilog-XL
Verilog simulators in separate directories.

If you are using the&sg script to create your SWIFT template, the module it creates leaves the bits of a bus as individual
ports in the input/output header and does not “busify” them. The instantiation of the SWIFT template is usually more

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

6.2 Cycle-Exact Simulation Model

convenient if the bits of a bus are concatenated together in the module’s port header. An example of the raw output from
vsg is provided in the filemc/jade_vmc_release/readme/swift_template/jade_vmc_model.v.
An example of thersg output which has been modified to concatenate bus bits in the port header is provided in the file

vmc/jade_vmc_release/readme/swift_template/jade_vmc_model.v.mod.

If you runvsg

directly, however, you will need to perform the bus concatenation manually if you desire it for your SWIFT template.

The SWIFT template created by VCS (version 5.1 and later) automatically busifies the port header.

6.2.4 Back-annotating with SDF Timing

This is not currently supported.

6.2.5 Register Windows

To increase the visibility into the VMC model, a number of core signals are made available via register windows. This
added information can make it easier to determine what the core is doing and help debug any integration/software
problems. Table 6-1 shows the signals available via register windows.

Table 6-1 Core signals visible in VMC model

Name Size Description
RFn [31:0] Contents of register n. Entries 1-31 of the register file are available. (Entry 0 is always 0).
CPZ xxx [31:0] Contents of Coprocessor 0 register xxx. All possible 4K Cop0 registers are included, but TLB-related
-) ones are not valid when using the Fixed Block Address Translation instead of the TLB.
InstnVA [31:0] Virtual Address for the Instruction Fetch.
InstnPA [31:12] | Physical Address for the Instruction Fetch (bits [11:0] are untranslated and thus the same as thg VA).
InstnCacheable [0:0] Indicates whether the Instruction Fetch is a cacheable reference.
ICacheHit [0:0] Indicates that Instruction reference hit in the 1$.
InstnData [31:0] Instruction Data returned for Instruction Fetch.
DataVA [31:0] Virtual Address for the Load/Store reference.
DataPA [31:12] | Physical Address for the Load/Store reference (bits [11:0] are untranslated and thus the same as the VA).
DataCacheable [0:0] Indicates whether the Load/Store reference is cacheable.
DCacheHit [0:0] Indicates that Load/Store reference hit in the D$.
LoadData [31:0] Load Data returned on a Load.
Indicates what type of Load/Store operation is occurring. Use to qualify DataVA etc.
BusType [2:0]]
0-No operation, 1-load, 2-store, 3-prefetch, 4-sync, 5-1CacheOp, 6-DCacheOp
Bus Interface Unit read transaction tracking. LWptr is bumped every time a read address is accgpted by
BIU LWbtr [3:0] the system. LRptr is bumped every time read data is returned. When LWptr != LRptr, the 4K cor¢ is
—-p) waiting for read data to be returned. Useful for debugging system problems. Core “hangs” are often the
result of a system not returning all requested data.
BIU_LRptr [3:0] See above.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 39

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Simulation Models

6.2.5.1 Enabling VMC Window Signals in Synopsys VCS

Enabling the register window signals so they are visible is dependent on the simulator you are using. For Synopsys VCS,
the register windows are globally enabled with the following code, which must be included somewhere in your
testbench:

initial $swift_window_monitor_on(“<instance_path_to_jade_vmc_model>");

6.2.5.2 Enabling VMC Window Signals in Other Verilog Simulators

For Verilog-XL, NC-Verilog, and ModelSim, you need to individually specify every window signal you want to view.
The code required is most easily placed in the SWIFT template produced byghsommand, as described in Section
6.2.3, "SWIFT Template Generation". The format of the enabling code is:

$Im_monitor_vec_map(<verilog_register>, “<instance_path_to_jade_vmc_model>",
“<window_signal_name>");

In the SWIFT template created tagg , the <verilog_register> statements exist in the template but are dangling. You
can use these dangling registers in the command required to enable each window signal. Here is an example of the code
required to view some specific window signals:
initial
begin
$Im_monitor_vec_map(RF1, “<instance_path_to_jade_vmc_model>", “RF1");
$Im_monitor_vec_map(RF2, “<instance_path_to_jade_vmc_model>", “RF2");

end
The examplersg -generated template provided in

vmc/jade_vmc_release/readme/swift_template/verilog-xl/jade_vmc_model.v.mod
includes the full code needed to enable all the window signals, so you can look there as a reference.

6.2.6 VMC Simulation configuration

The VMC model is configurable so that all 4K™ cores can be run. The available options are shown in Table 6-2 on page
40 and include processor model (4Kc™, 4Km™, or 4Kp™ core), cache config, and configuration of optional EJTAG
features. The configuration is done by setting up a memory file which is read in and used to select between the different
modules. The memory file is calletemory.jade_config and needs to be in a swift readmem format which is:

#Comment
<Address>/<Data>;
The available configuration options are shown in the following table
Table 6-2 VMC Configuration Options

Addr
Name: (hex) Description Legal Values Default
ICacheAssoc 1 Associativity of the instruction cache. 1,234 2
ICacheWaySize 2 Size of each way of instruction cache (in KB). 0(no %), 1,2,4 al
DCacheAssoc 3 Associativity of the data cache. 1,2,3,4 2
DCacheWaySize 4 Size of each way of data cache (in KB). 0(no D$), 1, 2, 4 4
- Magically flush caches at time 0 to avoid simulatioh © - NO Magic Init
InitCaches 5 cycles for software cache initialization 1
y ' 1- Magic Init
40 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

6.2 Cycle-Exact Simulation Model

Table 6-2 VMC Configuration Options

Addr
Name: (hex) Description Legal Values Default
0 - Use TLB (4Kccore)
BATMMU 6 Use Fixed Block Address Translation instead of TL B Use Fixed MMU (4Kmcore 0
/ 4Kp core)
0 - Fast MDU (4Kccore/4Km
LITEMDU 7 Use smaller, iterative multiplier. core) 0
1 - Iterative MDU (4Kpcore)
0-No SB
EJSModule 8 Which ejtag simple break module should be used. 1 - 2I/1D SB 2
2 - 41/2D SB
_ 0 - No TAP
EJTModule 9 Use ejtag TAP module. 1
1- Use TAP
Unique instance identifier. Tags output messages and
Inst A trace files to more easily support multiple instancesT6163 0
: Display Enable. Controls printing of warning or errcr0 - No messages
dispEn B messages coming from the VMC model 1
g g : 1 - Messages
0 - Never stop
: Controls stopping of VMC model. Determines which
haltit c conditions will cause a $finish within the model. 1 - Stop on FATAL errors 1
2 - Stop on any warning or errgr
Enables logging of all transactions on the cores eqr¥ - No log
bus_trace D interface (external bus) : 1
: 1 - Log bus transactions
0 - No tracing
dumpTrace E Enables instruction trace. 1
1 - Trace file will be created
At 0 - No Global clock-gating
Global clock-gating = ilir;aﬁlgﬁotﬁe global clock-gating for the WAIT . 1
1 - Global clock-gating enableq
An examplememory.jade_config file is shown below:
Memory Image File containing simulation configuration information
Variable Number/Variable Value
#DCacheWaySize
4/2;
#ICacheWaySize
2/4;
#LITEMDU
7/0;
#BATMMU
6/0;
#EJSModule
8/2;
#EJTModule
9/1;
#DCacheAssoc
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 41

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Simulation Models

42

3/4;
#1CacheAssoc
1/4;
#InitCaches
5/0;

#Inst

AJO;

#dispEn

B/1;

#haltlt

C/1;
#bus_trace
D/1;
#dumpTrace
E/1;

#Global Clock-gate Enable
F/1

6.2.7 Trace Files

The VMC model is capable of producing two types of trace files: a log of all transactions on the EC™ interface and a
trace of all instructions executed.

6.2.7.1 Bus Trace
The bus trace filevfnc.bus(.Inst).trace) contains information about all transactions on the EC interface. The
fields are:

« Idle: Indicates how many idle cycles immediately preceded this transaction on the bus. For bursted transactions, the
value for the first beat of the burst is used for all beats of the burst.

 Pipe: Indicates the pipeline depth - how many transactions were outstanding when this transaction started. Again, all
beats of a burst reflect the value for the first beat of the burst.

» Type: Transaction type: RI- Instruction read, RD- Data read, W- Data write.

» Beat: Indicates which beat of the burst this is and the total length of the burst. “1 of 1x” indicates a non-bursted
transaction. “3 of 4” indicates the 3rd beat of a 4 beat burst.

» EB_A<35:0>: Address value.

» EB_R/WData<31:0>: Read or Write data. The value in parentheses is the valid mask. A zero in any bit position
indicates that there was an x in the corresponding bit of the data.

» BE<3:0>: Byte Enables - indicates which byte lanes are active for this transaction.
« Error: Indicates whether a bus error was signalled on this transaction.

» A wait states: Indicates the number of address wait states seen by this transaction.
» D wait states: Indicates the number of data wait states seen by this transaction.

» Cycle: Indicates a cycle number when this transaction completed. (Cycles are counted from the falling edge of the
first Cold Reset). For bursts, all beats of the burst report the cycle that the burst completed.

6.2.7.2 Instruction Trace

The instruction trace filesnc(.Inst).trace) tracks the instruction flow in the processor. The architectural-visible
effects of each instruction (register updates, memory writes, etc.) are also logged. The trace comes out in a raw format
and is most easily read after a post-processing stegbiimgSort script does this post-processing. It sorts the

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

6.2 Cycle-Exact Simulation Model

trace file to group all lines associated with a given instruction, adds instruction disassembip{n8#i§Sdis) and
slightly reformats the trace.

[Ins:4 Cyc:6]bfc00000 1fcO0000 2: 00000000 NOP

|<----- a---->|< b >|< c >|

a) Each line is tagged with an instruction number and a cycle number. Gaps in the
instruction number sequence can occur near exceptions. The cycle number reflects

the cycle at which the information was dumped. Most of the information is dumped

from a canonical point in the pipeline, so most of the lines for a given

instruction will have the same cycle number. The exception is the update of the

HI/LO registers in the MDU. Because the MDU pipeline can run independently from the
main pipeline, these register updates can be reported in a different cycle.

b) For instructions that do not take a fetch exception, the first line of the

instruction will be a fetch line. This field shows the hex values of the Virtual

Address, Physical Address, and Cache Coherency Attribute (CCA) for the instruction

fetch. On the 4K cores, only two of the eight CCA values are truly supported. When
simulating a 4Kc core, the entire CCA is not maintained in the ITLB, so the CCA for
mapped instruction addresses will always be reported as 2 (uncacheable) or 3

(cacheable)

¢) This field is the instruction opcode and disassembly.

[Ins:954 Cyc:8166]Write GPR[26] = 80024230(ffffffff)

|< a >|< d >|< e >|

d) This indicates that the instruction caused a register update. Possible registers

are GPR[1-31] for the general purpose registers, Hl and LO for the MDU registers,

and CO* for Coprocessor Zero registers.

e) This is the data value in hex. The value in parentheses is the valid mask. A 0

indicates that the corresponding bit in the data was an x. A dash in the data value
is used for sub-word loads and stores to indicate invalid bytes on the memory

read/write line.

[Ins:972 Cyc:8359][Mem Read [80024168 00024168 3] = 00000000(ffffffff)

|<-m-mmm- a------ >|<---f--->|< g >|< e >|

f) This is for memory accesses. Mem Read indicates a load that missed in the cache.
Cache Read indicates a load that hit in the cache. Mem Write indicates a store

(since the 4K cores have write-through caches, memory is always written so there is
no distinction for cache hit/miss).

g) This is the virtual address, physical address, and cache coherency algorithm for
the data access.

[Ins:187 Cyc:1978 |Write TLB Entry[15]: PageMask(mask) = 00000000(ffffffff)

[Ins:187 Cyc:1978] TLB Entry[15]: EnHi(mask) = 80000000(ffffffff)

[Ins:187 Cyc:1978] TLB Entry[15]: EnLol(mask) = 00000000(ffffffff)

[Ins:187 Cyc:1978] TLB Entry[15]: EnLoO(mask) = 00000000(ffffffff)

|< a >|< h >|

h) A TLB write is shown on multiple lines indicating the TLB entry number and the

source registers for data being written into the entry.

6.2.8 Simple Testbench

To simplify bring-up of the VMC model, a simple testbench is included in 5 &§DEHOME/vmc/verification

directory. This testbench can be used to verify that the VMC model is installed correctly and shows examples of how to
use it. The testbench ties off many of the Jade inputs not directly related to the memory access portion of the EC™
interface. It has a verilog memory that is loaded fromtébst.hex file. The includedest.hex has a simple boot
sequence that executes a few instructions, then does a store to a trick box in the system model. When that store is seen,
the system model does a $finish to stop the simulation.

In order to use the VMC model, you will need a verilog template. This template is specific to your simulator (including
the particular version in some cases). There are directions for creating the template file in the file

$JADEHOME/vmcl/jade_vmc_release/readme/README.txt . There are two sample templates in the
verification directory:jade_vmc_model.vcs.v is a template for vcs, arjdde_vmc_model.vxl.v isa
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 43

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Simulation Models

template for VerilogXL, ModelSim, and NC Verilog. These templates are slightly modified from how they were
generated. Buses are broken up into bits by VMC. These templates have the bits of the buses reassembled so that the
interface looks identical to the original RTL.

The Makefile inBJADEHOME/bfm/verification provides targets for building the VMC model in this testbench.
Support for several simulators is included.

6.2.9 Multiple VMC Instances

It is possible to instantiate multiple 4K VMC models to simulate a multi-CPU system. The swift template file is
parameterized to control which configuration file is read in. By reading a unique configuration file, each instance can be
configured differently. By specifying unique instance tags in the memory file, the log output and trace files from the
different models can be distinguished. The following example shows how this multiple instantiation can be
accomplished. The following Verilog code will instantiate two VMC models, with instance names “vmc1” and “vmc2”,
which will read thememory1l.jade_config andmemory?2.jade_config configuration files respectively. Note

that you must manually create the unique configuration files with the desired options for each instance, as described in
Section 6.2.6, "VMC Simulation configuration" on page 40.

jade_vmc_model vmcl (....);
defparam vmcl.InstanceName = “vmcl”;
defparam vmcl.MemoryFile = “memoryl”

jade_vmc_model vmc2 (...);
defparam vmc2.InstanceName = “vmc2”;
defparam vmc2.MemoryFile = “memory2”;

6.2.10 Assertion Checks

A variety of assertion checks are embedded within the 4K VMC model. These checkers look for error conditions and
unknown state on critical signals. These checks are divided into a few basic categories:

» Fatal HW Errors - These errors should never occur and indicate a problem with the CPU. MIPS support
(support@mips.com) should be contacted with the details of the problem.

» Fatal SW Errors - These errors indicate that the chip cannot proceed due to unknown state on internal signals. These
errors can be caused by faulty software or incorrect chip hook up.

» XWarning - This indicates unknown state inside the chip from which it is theoretically possible to recover. Typically,
these warnings will give a more descriptive message and better point to start debugging from than the eventual Fatal
SW Error.

 1/O Warning - This indicates that the chip is possibly not hooked up correctly. For example, this will be flagged if the
reset inputs are asserted for more than 2000 cycles. This is symptomatic of someone assuming that the reset inputs
are active low rather than active high, but it might be the desired behavior in the system testbench or simulation
environment. Thus these events are classified as warnings and not fatal errors.

+ Fatal I/O Errors - These errors indicate illegal conditions on the primary 1/0. Examples of this include undriven
inputs or insufficient reset pulse width.

Recall that configuration options are available to enable or disable the display of these assertion messages, and to control
whether or not a fatal error will stop simulation; see Section 6.2.6, "VMC Simulation configuration" on page 40 for more
details.

44 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 7

Clocking, Reset & Power

This chapter describes the clocking and initialization interface on a MIPS3p#dcessor core, when the core is
integrated into a system environment. The power-reduction features available on a 4K™ core are also discussed.

7.1 Clocking

There are potentially two input clocks which must be generated and driven to a 4K core. The main clock input is named
Sl_ClkIn,and exists on every 4K core. An optional clock input is calleld TCK and is only present if an EJTAG TAP
controller is implemented within the core. Both clocks are used internally at 1x their respective input frequencies; no
frequency multiplication or division is performed internally. No phase-locked loop is present within the 4K core.
Typically no minimum frequency is required, so the frequency of the input clocks can be quickly changed or stopped if
desired, as long as edge rate integrity is maintained.

The following discussion describes general clocking characteristics of a typical 4K core implemented with a standard
ASIC physical design methodology. It is possible that a specific hard core implementation may differ from the general
clock guidelines discussed here; e.g., dynamic circuit implementation techniques may mandate that a minimum clock
frequency be met for a particular hard core. So the general clocking assumptions described here must be validated for
the specific 4K core which is being integrated before proceeding with system clock design.

7.1.1 SI_CIkIn Clock

SI_CIkInis the primary 1x input clock to the 4K core. It is used to enable the vast majority of sequential logic, as well
as time the synchronous SRAMs normally used to implement the caches, within the 4K core.

Generally, only the positive edge of 8k Clkinclock is used internally to the core, so there is no specific duty cycle
requirement. Transparent-low latches usually do exist within the core, so the duty cycle should still be within 40-60%
of the period. Since no dynamic logic or PLL is present, the minimum frequency is 0 MH&li.€lkincan be stopped

if desired. The maximur8l_Clkinfrequency depends on the specific 4K core implementation.

7.1.2 EJ_TCK Clock

EJ_TCKis an optional 1x clock input to the 4K core, which only exists if the core implements an EJTAG TAP controller.
EJ_TCK:is the test input clock used to synchronize the serial shifting of data into and out of the TAP controller. The
EJ_TCKclock is completely asynchronous to @ie Clkinclock, in terms of both frequency and phase.

The minimum frequency d&J_TCKis 0 MHz, so it can be stopped when the TAP controller is not used. The maximum
frequency is specified as 40 MHz (25 ns period), due to limitations of the probes which usually interface to the EJTAG
TAP port. Both the rising and falling edgesi®d_TCKare used to control flops. The minimum clock high and low times

are specified as 10 ns, yielding a duty cycle requirement of 40 to 60% at 40MHz.

7.1.3 Handling Clock Insertion Delay
When a 4K core is implemented, clock trees are usually created to buffer and distribBte@tidnandeEJ_TCKclocks

throughout the core. These clock trees impart a finite delay from the primary clock inputs to the eventual usage of the

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 45
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 7 Clocking, Reset & Power

buffered clocks at the sequential elements within the core. The exact amount of clock insertion delay is a characteristic
of each specific 4K core implementation.

The clock insertion delay presents an issue which must be managed when the 4K core is instantiated in the rest of the
system. Any clock insertion delay from the clock input to the actual clock usage at the sequential elements for the
primary inputs and outputs of the core reduces the primary input setup times but increases the input hold times as well
as the clock-> out delays on the primary outputs. Since all 4K core inputs are received directly by flops, and the core
outputs come directly from flops, the setup and hold times for the primary inputs and outputs can be balanced at the
system level.

Several different techniques can be used to manage the 4K core’s internal clock insertion delay.

 Tolerate the core clock insertion delay at the system level, if possible, within the system logic which interfaces to the
4K core. This may entail adding delay elements when driving inputs, so that hold times are not violated, and
receiving “late” outputs, which reduces the number of logic stages that can exist in the same cycle the outputs are
driven since the clock insertion delay is visible. This may not be acceptable for all system designs, but is usually the
simplest approach.

» When creating the system clock tree for the sequential logic which interfaces to the 4K core, match this system clock
to the core’s internal insertion delay. Clock tree generation tools have the ability to match relative clock delays, so
knowing the core’s internal clock insertion delay will allow the internal clocks to be specified as matching points
(within reasonable skew limits). With this approach, input hold times and output delays can be minimized which
allows more time in the cycle for useful work.

» Use theSI_ClkOutreference clockSI_ClkOutis an output of the 4K core which is tapped from the internal clock
tree so that it is identical (within reasonable skew limits) to the clock seen by the sequential elements within the 4K
core. The difference betwe&i_ClkinandSI_ClkOutrepresents the clock insertion delay of the primary clock used
within the 4K core. (Note that there is no corresponding reference clock output B fR€Kclock, so this
technique cannot be applied to that clock domain.) Due to loading limitationS] tiikOutclock probably can’t be
used directly to control system logic that interfaces to the core, but it can be used, for example, as the reference clock
to a de-skewing phase-locked loop in the system to “hide” the core’s clock insertion delay.

7.2 Reset and Hardware Initialization

46

Hardware initialization is accomplished through 8ieColdReseSI_ReseandSI_NMIlinput pins, and via the
EJ_TRST_Ninif the optional EJTAG tap controller is present within the 4K core. This section describes how these pins
are typically used in systems. These reset input pins must always be driven, either to a logic “1” or “0”, to the 4K core,
and not left floating or indeterminate. Each of the reset-re&itednputs trigger a different type of exception within

the 4K core; thdiIPS32 4K™ Processor Core Family Software User’'s Maesakribes more details about these
exceptions.

The initialization process for a 4K core requires a combination of hardware and software. This section describes the basic
hardware initialization interface. In accordance with the MIPS-32™ Architecture, only a minimal amount of state is reset
by hardware; so much internal state, like the Translation Look-Aside Buffer (TLB) and the cache tag arrays, must be
initialized via software before it can be used. MI®S32 4K™ Processor Core Family Software User’'s Manual

describes the software initialization requirements of a 4K core.

7.2.1 SI_ColdReset

TheSI_ColdResanput is a hard reset signal which initializes the internal hardware state of the 4K core without saving
any state information. It is active high, and must be asserted for a minimu8i dCkIncycles. The falling edge

triggers a reset exception which is taken by the core as the highest priority. TyBicallgldReseis driven by a
power-on-reset circuitin the system. For reliable operation, the power supply must be stableZin@tkiclock must

be running befor&l_ColdReses deasserted.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

7.3 Power Management

7.2.2 Sl_Reset

The SI_Reseinput is a warm reset input to the 4K core. It is active high, and must be asserted for a minimum of 5
SI_ClkIncycles. The falling edge triggers a soft reset exception which is taken by the core. Ty@taRgseis driven

by the OR ofSI_ColdReseand the reset “button” in the system. Historically, MIPS processors have required Reset to
be asserted during a ColdReset. The 4K cores do not require this, so an ass&tiddafiResedoes not need to force

the assertion dbl_Resefor reliable operation, the power supply must be stable angliti@lkinclock must be running
beforeSI_Reseis deasserted.

7.2.3 SI_NMI

TheSI_NMIlinput signals a non-maskable interrupt (NMI). This signal is active high and rising edge sensitive, but must
be asserted for a minimum of one clock cycle in order to be recognized. The sampling of the rising edge triggers an NMI
exception to be taken by the core. Typicay, NMlis used to indicate time-critical information, like impending loss of
power in the system.

7.2.4 EJ_TRST_N

An additional reset signal is required when the EJTAG TAP controller is pra&s@ntRST_Ns an active low reset signal
that resets the TAP controller. This is an asynchronous res@&AntCKdoes not need to be toggling for it to take effect.
EJ TRST_Nnust be asserted during power-on reset in order for the TAP controller and processor to be properly
initialized. In general, the low-asserted pulse width should be the equivalent of at Iea3t dad&cycle wide.

7.3 Power Management

Two primary mechanisms exist for managing system power with a 4K core: the hardware method of slowing down (or
stopping) the primar$l_Clkinclock and the software method of initiating “sleep” mode via the execution A&
instruction.

7.3.1 ReducingSI_ClIkin frequency

The most global method of power control is to hold the prin&ryClkIninput static, or at a lower frequency, when the

4K core is notin use, if desired by your system logic. The 4K core is internally fully static so the clock can be held either
high or low, and the input frequency can be changed from maximum to a lower frequency, including zero, (and
vice-versa) in a single cycle since there is no internal PLL.

The core outputs some pins which can be used, if desired, by the system logic to control entry or exit to this low-power
state. Thesl_RPoutput is directly driven from the internal CPO Status register, as an external indication that it is
desirable to place the 4K core in a low-power state by reducing the clock frequency. When the RP bit in the Status register
is set by software, system logic can detect the assertion <HePoutput and choose to place the 4K core in a lower

power state by reducing the clock frequency. Additionally,$heERLandSI_EXLoutputs, derived from the ERL and

EXL bits in the Status register, indicate that an error or exception has been taken, and can be sensed to speed the clock
frequency up again if desiredJ_DebugMndicates that a debug exception has been taken. This can also be used speed
the clock back up. These output pins need not be used to control the core’s clock frequency, if other system logic is
available to indicate that the 4K core is not being used.

7.3.2 Software-induced sleep mode

Upon execution of the softwaW®AIT instruction, the 4K core will enter a low-power state once all outstanding bus
activity has completed. Most of the clocks in the 4K core will be stopped, but a handful of flops will remain active to

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10 47

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Chapter 7 Clocking, Reset & Power

sense an external hardware event which will awaken the core again. The external events which can wake the core back
up are any enabled interrupt, NMI, debug interrupt ga DINT), or reset. Power is reduced since the global gated clock
which goes to the vast majority of flops within the 4K core is held idle during this sleep mod&IT8kepin will be

asserted when the core enters this low power mode. This can be used by the system logic to achieve further power
savings. There will be no bus activity while the core is in sleep mode, so the system bus logic which interfaces to the 4K
core could be placed into a low power state as well.

48 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

Appendix A

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change

bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself. Certain parts of this document (Instruction set
descriptions, EJTAG register definitions) are references to Architecture specifications, and the change bars within these

sections indicate alterations since the previous version of the relevant Architecture document.

Revision

Date

Description

0.9.4

Dec 20, 1999

Updated BFM references to be more in-line with the current BFM
structure.

0.9.5

Jan 19, 2000

Updated simulation model chapters with details on simple testbenchy.

Fixed trademark usage.

Added more text describing tiB_WWBE/EB_EWBIhterface.

01.00

Jan 31, 2000

AddedPM_DTLB{Hit,Miss}signals.
Updated text foEB_WWBE/EB_EWBE
Added simple testbench for BFM and VMC models.

Updated references MIPS32 4K™ Processor Core Family Software
User's Manuatto reflect name change.

01.01

Mar 21, 2000

Changeds|_TimerOuto SI_Timerlntto correctly reflect the RTL name|
of this output.

Describe new VMC features - better tracing and controllability.

Pulled VMC installation information into this document from
README.txt .

01.02

April 14, 2000

RenamedBFMScript.pdf document tBFMUsersManual.pdf in
the bfm subdirectory.

Added discussion about handling multiple instances of the VMC mq

Added general description of assertion messages which can emang
from the VMC model.

Switched to a fixed-width font in the explanation of the VMC instructi
trace file format.

del.

01.03

May 30, 2000

Added description of the maximum outstanding transactions that wi
exist in a 4K core.

Clarified instructions for “EDAV Packages” selection when installing t
VMC model.

Added description of prefixes used in names of system interface sig

Updated copyright notice to conform to latest standard.

nals.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10

Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

49

Appendix A Revision History

Revision Date Description

» Reformatted cover sheet, added MD number.

01.04 July 18,2000 | . Added details about assertion} TRST_Nh Clocking, Reset &
Power chapter.

» AddedChapter 4, “EJTAG Interface.”

» Split System Interface chapter into two separate chapte@hfapter 2,
01.05 October 18, 2000 “Signal Description,’”andChapter 3, “EC™ Interface.”

» Modified timing diagrams in EC™ Interface chapter to reflect
Jade-specific behavior on back to back transactions.

01.06 October 24, 2000 ¢ Converted document to new template.

* Removed the EJ_PartNumber inputs from the Multicore figure.
» Updated Section 4.2.2, "EJTAG Device ID input pins" on page 29.

» Added discussion about busification of module ports in SWIFT template
01.07 December 4, 2000 for VMC model.

» Refer to the VMC model as “cycle-exact” instead of “cycle-accuratef.

» Added description about runnisgviftcheck to verify the VMC
installation.

» Reworded Section 4.1.2.2, "Multiplexed pin access" on page 26, to hot
claim violation of EJTAG spec. as this was not true.

* Removed most of BFM description. BFM docs are in BFM release
package.

01.08 September 26, 2001 « Updated to latest document template
» Added VMC switch for Global clock-gating in Table 6-2 on page 40.
» Document support for linux platform for VMC model

» AddedSI_SimpleBEnode.

» Changed maximum outstanding transactions from 12 to 16 to reflect split
writes in SimpleBE mode.

» Added new chapter describing Performance Monitoring interface.
* Removed references to filenames of related documents, since those

filenames are now explicitly identified by the MIPS MDxxxxx document
01.09 March 7, 2002 number.

+ Clarified description of fastest EC write, 8ection 3.2.3, "Fastest Writd
Transaction'

» Added note about removal of SysAD merging

» Updated refererences to EJTAG spec to refer to 2.6 instead of 2.5.1

01.10 September 20, 2002 » Update VMC description to reflect new version & new licensing

50 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 01.10
Copyright © 1999-2002 MIPS Technologies Inc. All rights reserved.

	MIPS32 4K™ Processor Core Family Integrator’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Overview
	1.1� Environment Variable Setup

	Signal Description
	2.1� Naming Convention
	2.2� Signal Description

	EC™ Interface
	3.1� Introduction
	3.2� Interface Transactions
	3.2.1� Fastest Read Transaction
	3.2.2� Single Read with Wait States
	3.2.3� Fastest Write Transaction
	3.2.4� Single Write with Wait States
	3.2.5� Burst Read
	3.2.6� Burst Write
	3.2.7� Back-to-Back Reads
	3.2.8� Back-to-Back Writes
	3.2.9� Read Followed by Write with Reordering
	3.2.10� Write Followed by Read with Reordering

	3.3� Outstanding Transactions
	3.4� Sequential Transactions
	3.5� Write Buffer
	3.5.1� Merge Pattern Control
	3.5.1.1� No Merge
	3.5.1.2� Full Merge
	3.5.1.3� SysAD Merging

	3.6� SimpleBE Mode
	3.7� External Write Buffers

	EJTAG Interface
	4.1� EJTAG versus JTAG
	4.1.1� EJTAG similarities to JTAG
	4.1.2� Sharing EJTAG resources with JTAG
	4.1.2.1� Daisy chained TDI-TDO
	4.1.2.2� Multiplexed pin access

	4.2� How to connect EJ_* pins
	4.2.1� EJTAG chip-level pins
	4.2.1.1� Optional ETRST* pin
	4.2.1.2� Optional EDINT pin

	4.2.2� EJTAG Device ID input pins
	4.2.2.1� EJ_ManufID[10:0]
	4.2.2.2� EJ_PartNumber[15:0]
	4.2.2.3� EJ_Version[3:0]

	4.2.3� EJTAG Software Reset pins
	4.2.3.1� EJ_PrRst pin
	4.2.3.2� EJ_PerRst pin
	4.2.3.3� EJ_SRstE pin
	4.2.3.4� One possible Reset Logic implementation

	4.3� Multi-Core implementation
	4.3.1� TDI/TDO daisy-chain connection
	4.3.2� Multi-Core Breakpoint Unit

	Performance Monitoring Interface
	5.1� PM Interface versus Performance Counters
	5.2� Interface Protocol
	5.2.1� Events
	5.2.2� Example Instruction Sequence

	Simulation Models
	6.1� Bus Functional Model
	6.2� Cycle-Exact Simulation Model
	6.2.1� Installing the VMC Model
	6.2.2� Verifying the VMC Installation
	6.2.3� SWIFT Template Generation
	6.2.4� Back-annotating with SDF Timing
	6.2.5� Register Windows
	6.2.5.1� Enabling VMC Window Signals in Synopsys VCS
	6.2.5.2� Enabling VMC Window Signals in Other Verilog Simulators

	6.2.6� VMC Simulation configuration
	6.2.7� Trace Files
	6.2.7.1� Bus Trace
	6.2.7.2� Instruction Trace

	6.2.8� Simple Testbench
	6.2.9� Multiple VMC Instances
	6.2.10� Assertion Checks

	Clocking, Reset & Power
	7.1� Clocking
	7.1.1� SI_ClkIn Clock
	7.1.2� EJ_TCK Clock
	7.1.3� Handling Clock Insertion Delay

	7.2� Reset and Hardware Initialization
	7.2.1� SI_ColdReset
	7.2.2� SI_Reset
	7.2.3� SI_NMI
	7.2.4� EJ_TRST_N

	7.3� Power Management
	7.3.1� Reducing SI_ClkIn frequency
	7.3.2� Software-induced sleep mode

	Revision History

